References
- A. Subramani, J.G. Jacangelo, Emerging desalination
technologies for water treatment: a critical review, Water Res.
75 (2015) 164–187.
- M. Chandrashekara, A. Yadav, Water desalination system
using solar heat: a review, Renewable Sustainable Energy
Rev., 67 (2017) 1308–1330.
- H. Yoon, K. Jo, K.J. Kim, J.Y. Yoon, Effects of characteristics of
cation exchange membrane on desalination performance of membrane
capacitive deionization, Desalination, 458 (2019) 116–121.
- M.S. Mohsen, B. Akash, A.A. Abdo, O. Akash, Energy
options for water desalination in UAE, Procedia Comput. Sci.,
83 (2016) 894–901.
- S. Gorjian, B. Ghobadian, Solar desalination: a sustainable
solution to water crisis in Iran, Renewable Sustainable Energy
Rev., 48 (2015) 571–584.
- D. He, C.E. Wong, W.W. Tang, P. Kovalsky, T.D. Waite, Faradaic
reactions in water desalination by batch-mode capacitive
deionization, Environ. Sci. Technol. Lett., 3 (2016) 222–226.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and delivering
clean water. Comparison to present desalination practices:
will it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
- S. Sen Gupta, M.R. Islam, T. Pradeep, Chapter 7 – Capacitive
Deionization (CDI): An Alternative Cost-Efficient Desalination
Technique, S. Ahuja, Ed., Advances in Water Purification
Techniques: Meeting the Needs of Developed and Developing
Countries, Elsevier, Radarweg 29, P.O. Box: 211, 1000 AE
Amsterdam, Netherlands, 2019, pp. 165–202.
- M. Wang, X.T. Xu, Y.J. Li, T. Lu, L.K. Pan, Enhanced desalination
performance of anion-exchange membrane capacitive deionization
via effectively utilizing cathode oxidation, Desalination,
443 (2018) 221–227.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser,
Water desalination via capacitive deionization: what is it and
what can we expect from it?, Energy Environ. Sci., 8 (2015)
2296–2319.
- W.Q. Kong, X.D. Duan, Y.J. Ge, H.T. Liu, J.W. Hu, X.F. Duan,
Holey graphene hydrogel with in-plane pores for highperformance
capacitive desalination, Nano Res., 9 (2016)
2458–2466.
- Y.H. Bian, X.F. Yang, P. Liang, Y. Jiang, C.Y. Zhang, X. Huang,
Enhanced desalination performance of membrane capacitive
deionization cells by packing the flow chamber with granular
activated carbon, Water Res., 85 (2015) 371–376.
- H.B. Li, Y.L. Ma, R. Niu, Improved capacitive deionization
performance by coupling TiO2 nanoparticles with carbon
nanotubes, Sep. Purif. Technol., 171 (2016) 93–100.
- Z. Peng, D.S. Zhang, L.Y. Shi, T.T. Yan, High performance
ordered mesoporous carbon/carbon nanotube composite
electrodes for capacitive deionization, J. Mater. Chem., 22 (2012)
6603–6612.
- M.C. Zafra, P. Lavela, G. Rasines, C. Macías, J.L. Tirado,
C.O. Ania, A novel method for metal oxide deposition on carbon
aerogels with potential application in capacitive deionization
of saline water, Electrochim. Acta, 135 (2014) 208–216.
- C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi,
D. DePaoli, S. Dai, Mesoporous carbon for capacitive
deionization of saline water, Environ. Sci. Technol., 45 (2011)
10243–10249.
- B. Milow, L. Ratke, S. Ludwig, Citric Acid Catalyzed Organic
Aerogels, Proc. Seminar on Aerogels, 2012, pp. 155–165.
- G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado,
J.B. Parra, C.O. Ania, N-doped monolithic carbon aerogel
electrodes with optimized features for the electrosorption of
ions, Carbon, 83 (2015) 262–274.
- M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini,
K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive
desalination with flow-through electrodes, Energy Environ.
Sci., 5 (2012) 9511–9519.
- P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish
produced water using carbon aerogel-based capacitive
deionization technology, Water Res., 42 (2008) 2605–2617.
- G.J. Doornbusch, J.E. Dykstra, P.M. Biesheuvel, M.E. Suss,
Fluidized bed electrodes with high carbon loading for water
desalination by capacitive deionization, J. Mater. Chem. A,
4 (2016) 3642–3647.
- M. Pasta, C.D. Wessells, Y. Cui, F. La Mantia, A desalination
battery, Nano Lett., 12 (2012) 839–843.
- F. He, P.M. Biesheuvel, M.Z. Bazant, T.A. Hatton, Theory of
water treatment by capacitive deionization with redox active
porous electrodes, Water Res. 132 (2018) 282–291.
- Y.H. Liu, W. Ma, Z.H. Cheng, J. Xu, R. Wang, X. Gang,
Preparing CNTs/Ca-Selective zeolite composite electrode to
remove calcium ions by capacitive deionization, Desalination,
326 (2013) 109–114.
- G.L. Sun, H.Y. Xie, J.B. Ran, L.Y. Ma, X.Y. Shen, J.M. Hu,
H. Tong, Rational design of uniformly embedded metal oxide
nanoparticles into nitrogen-doped carbon aerogel for highperformance
asymmetric supercapacitors with a high operating
voltage window, J. Mater. Chem. A, 4 (2016) 16576–16587.
- X.L. Li, R.W. Tang, K. Hu, L.Y. Zhang, Z.Q. Ding, Hierarchical
porous carbon aerogels with VN modification as cathode matrix
for high performance lithium-sulfur batteries, Electrochim.
Acta, 210 (2016) 734–742.
- T.F. Baumann, M.A. Worsley, T.Y.-J. Han, J.H. Satcher Jr.,
High surface area carbon aerogel monoliths with hierarchical
porosity, J. Non-Cryst. Solids, 354 (2008) 3513–3515.
- R. Kumar, S. Sen Gupta, S. Katiyar, V.K. Raman, S.K. Varigala,
T. Pradeep, A. Sharma, Carbon aerogels through organoinorganic
co-assembly and their application in water desalination
by capacitive deionization, Carbon, 99 (2016) 375–383.
- C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance
in capacitive deionization of activated carbon electrodes with a
tunable mesopore and micropore ratio, Desalination, 367 (2015)
60–68.
- K.B. Hatzell, M. Beidaghi, J.W. Campos, C.R. Dennison,
E.C. Kumbur, Y. Gogotsi, A high performance pseudocapacitive
suspension electrode for the electrochemical flow capacitor,
Electrochim. Acta, 111 (2013) 888–897.
- Y.L. Xu, M.F. Yan, S.S. Wang, L.H. Zhang, H.H. Liu, Z.F. Liu,
Synthesis, characterization and electrochemical properties of
carbon aerogels using different organic acids as polymerization
catalysts, J. Porous Mater., 24 (2017) 1375–1381.
- M.-W. Ryoo, J.-H. Kim, G. Seo, Role of titania incorporated
on activated carbon cloth for capacitive deionization of NaCl
solution, J. Colloid Interface Sci., 264 (2003) 414–419.
- X.P. Quan, Z.B. Fu, L. Yuan, M.L. Zhong, R. Mi, X. Yang, Y. Yi,
C.Y. Wang, Capacitive deionization of NaCl solutions with
ambient pressure dried carbon aerogel microsphere electrodes,
RSC Adv., 7 (2017) 35875–35882.
- Z. Wang, B.J. Dou, L. Zheng, G. Zhang, Z.H. Liu, Z.P. Hao,
Effective desalination by capacitive deionization with
functional graphene nanocomposite as novel electrode material,
Desalination, 299 (2012) 96–102.
- C.M. Wang, H. Song, Q.X. Zhang, B.J. Wang, A.M. Li, Parameter
optimization based on capacitive deionization for highly
efficient desalination of domestic wastewater biotreated
effluent and the fouled electrode regeneration, Desalination,
365 (2015) 407–415.
- H.L. Zhang, P. Liang, Y.H. Bian, Y. Jiang, X.L. Sun, C.Y. Zhang,
X. Huang, F. Wei, Moderately oxidized graphene–carbon
nanotubes hybrid for high performance capacitive deionization,
RSC Adv., 6 (2016) 58907–58915.