References
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- A. Khataee, A. Fazli, M. Fathinia, F. Vafaei, Simultaneous
elimination of two species of algae from a contaminated
water through ozonation process: mechanism and destruction
intermediates, Ozone Sci. Eng., 41 (2019) 35–45.
- S.D. Lu, H.N. Li, G.C. Tan, F. Wen, M.T. Flynn, X.P. Zhu,
Resource recovery microbial fuel cells for urine-containing
wastewater treatment without external energy consumption,
Chem. Eng. J., 373 (2019) 1072–1080.
- A. Schranck, R. Marks, E. Yates, K. Doudrick, Effect of urine
compounds on the electrochemical oxidation of urea using a
nickel cobaltite catalyst: an electroanalytical and spectroscopic
investigation, Environ. Sci. Technol., 52 (2018) 8638–8648.
- A.J. Kedir, B. Tawabini, A. Al-Shaibani, A.A. Bukhari, Treatment
of water contaminated with methyl tertiary butyl ether using
UV/chlorine advanced oxidation process, Desal. Water Treat.,
57 (2016) 19939–19945.
- F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar,
Electrochemical advanced oxidation processes: a review on
their application to synthetic and real wastewaters, Appl.
Catal., B, 202 (2017) 217–261.
- P.V. Nidheesh, M.H. Zhou, M.A. Oturan, An overview on
the removal of synthetic dyes from water by electrochemical
advanced oxidation processes, Chemosphere, 197 (2018)
210–227.
- S. Dbira, N. Bensalah, A. Bedoui, P. Cañizares, M.A. Rodrigo,
Treatment of synthetic urine by electrochemical oxidation
using conductive-diamond anodes, Environ. Sci. Pollut. Res.,
22 (2015) 6176–6184.
- O.T. Can, COD removal from fruit-juice production wastewater
by electrooxidation electrocoagulation and electro-Fenton
processes, Desal. Water Treat., 52 (2014) 65–73.
- R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New
perspectives for advanced oxidation processes, J. Environ.
Manage. 195 (2017) 93–99.
- L. Yu, M. Han, F. He, A review of treating oily wastewater,
Arabian J. Chem., 10 (2017) S1913–S1922.
- M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in
water/wastewater treatment: principles and applications. a
review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- D.F. Viana, G.R. Salazar-Banda, M.S. Leite, Electrochemical
degradation of Reactive Black 5 with surface response and
artificial neural networks optimization models, Sep. Sci.
Technol., 53 (2018) 2647–2661.
- G.G. Lenzi, R.F. Evangelista, E.R. Duarte, L.M.S. Colpini,
A.C. Fornari, R. Menechini Neto, L.M.M. Jorge, O.A.A. Santos,
Photocatalytic degradation of textile reactive dye using artificial
neural network modeling approach, Desal. Water Treat.,
57 (2016) 14132–14144.
- A. Akbarpour, A. Khataee, M. Fathinia, B. Vahid, Development
of kinetic models for photoassisted electrochemical process
using Ti/RuO2 anode and carbon nanotube-based O2-diffusion
cathode, Electrochim. Acta, 187 (2016) 300–311.
- G.R. Oliveira, A.V. Santos, A.S. Lima, C.M.F. Soares, M.S. Leite,
Neural modelling in adsorption column of cholesterol-removal
efficiency from milk, LWT-Food Sci. Technol., 64 (2015) 632–638.
- M.R. Gadekar, M.M. Ahammed, Coagulation/flocculation
process for dye removal using water treatment residuals:
modelling through artificial neural networks, Desal. Water
Treat., 57 (2016) 26392–26400.
- Y.M. da Silva Veloso, M.M. de Almeida, O.L.S. de Alsina,
M.S. Leite, Artificial neural network model for the flow regime
recognition in the drying of guava pieces in the spouted bed,
Chem. Eng. Commun., 207 (2019) 549–558.
- Y.M. da Silva Veloso, M.M. de Almeida, O.L.S. de
Alsina, M.L. Passos, A.S. Mujumdar, M.S. Leite, Hybrid
phenomenological/ANN-PSO modelling of a deformable
material in spouted bed drying process, Powder Technol.,
366 (2020) 185–196.
- O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada,
N.A. Mohamed, H. Arshad, State-of-the-art in artificial
neural network applications: a survey, Heliyon, 4 (2018) e00938.
- V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of
feedforward neural networks: a review of two decades of
research, Eng. Appl. Artif. Intell., 60 (2017) 97–116.
- A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling
of contaminated water treatment processes by homogeneous
and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem,
331 (2010) 86–100.
- F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration
process using artificial neural network and adaptive neurofuzzy
inference system, Desal. Water Treat., 57 (2016)
14369–14378.
- N. Messikh, M. Chiha, F. Ahmedchekkat, A. Al Bsoul,
Application of radial basis function neural network for removal
of copper using an emulsion liquid membrane process assisted
by ultrasound, Desal. Water Treat., 56 (2015) 399–408.
- S. Azadi, A. Karimi-Jashni, S. Javadpour, Modeling and
optimization of photocatalytic treatment of landfill leachate
using tungsten-doped TiO2 nano-photocatalysts: application
of artificial neural network and genetic algorithm, Process Saf.
Environ. Prot., 117 (2018) 267–277.
- A. Afram, F. Janabi-Sharifi, A.S. Fung, K. Raahemifar, Artificial
neural network (ANN) based model predictive control (MPC)
and optimization of HVAC systems: a state of the art review
and case study of a residential HVAC system, Energy Build.,
141 (2017) 96–113.
- A. Picos, J.M. Peralta-Hernández, Genetic algorithm and
artificial neural network model for prediction of discoloration
dye from an electro-oxidation process in a press-type reactor,
Water Sci. Technol., 78 (2018) 925–935.
- S. Chutipongtanate, V. Thongboonkerd, Systematic comparisons
of artificial urine formulas for in vitro cellular study, Anal.
Biochem., 402 (2010) 110–112.
- F. Gozzi, I. Sirés, A. Thiam, S.C. de Oliveira, A.M. Junior,
E. Brillas, Treatment of single and mixed pesticide formulations
by solar photoelectro-Fenton using a flow plant, Chem. Eng. J.,
310 (2017) 503–513.
- D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization,
Published as a Conference Paper at the 3rd International
Conference for Learning Representations, San Diego, 2015.
Available at: http://arxiv.org/abs/1412.6980 (accessed June 14,
2019).
- Y. Lu, J. Lund, J. Boyd-Graber, Why ADAGRAD Fails for
Online Topic Modeling, Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Copenhagen,
Denmark, 2017, pp. 446–451.
- L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of
carbamazepine and prediction by artificial neural networks,
Process Saf. Environ. Prot., 92 (2014) 888–895.
- J.R. Steter, E. Brillas, I. Sirés, On the selection of the anode
material for the electrochemical removal of methylparaben
from different aqueous media, Electrochim. Acta, 222 (2016)
1464–1474.
- M. Murugananthan, S. Yoshihara, T. Rakuma, N. Uehara,
T. Shirakashi, Electrochemical degradation of 17β-estradiol
(E2) at boron-doped diamond (Si/BDD) thin film electrode,
Electrochim. Acta, 52 (2007) 3242–3249.