References

  1. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  2. A. Khataee, A. Fazli, M. Fathinia, F. Vafaei, Simultaneous elimination of two species of algae from a contaminated water through ozonation process: mechanism and destruction intermediates, Ozone Sci. Eng., 41 (2019) 35–45.
  3. S.D. Lu, H.N. Li, G.C. Tan, F. Wen, M.T. Flynn, X.P. Zhu, Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption, Chem. Eng. J., 373 (2019) 1072–1080.
  4. A. Schranck, R. Marks, E. Yates, K. Doudrick, Effect of urine compounds on the electrochemical oxidation of urea using a nickel cobaltite catalyst: an electroanalytical and spectroscopic investigation, Environ. Sci. Technol., 52 (2018) 8638–8648.
  5. A.J. Kedir, B. Tawabini, A. Al-Shaibani, A.A. Bukhari, Treatment of water contaminated with methyl tertiary butyl ether using UV/chlorine advanced oxidation process, Desal. Water Treat., 57 (2016) 19939–19945.
  6. F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  7. P.V. Nidheesh, M.H. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  8. S. Dbira, N. Bensalah, A. Bedoui, P. Cañizares, M.A. Rodrigo, Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes, Environ. Sci. Pollut. Res., 22 (2015) 6176–6184.
  9. O.T. Can, COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desal. Water Treat., 52 (2014) 65–73.
  10. R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New perspectives for advanced oxidation processes, J. Environ. Manage. 195 (2017) 93–99.
  11. L. Yu, M. Han, F. He, A review of treating oily wastewater, Arabian J. Chem., 10 (2017) S1913–S1922.
  12. M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. a review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  13. D.F. Viana, G.R. Salazar-Banda, M.S. Leite, Electrochemical degradation of Reactive Black 5 with surface response and artificial neural networks optimization models, Sep. Sci. Technol., 53 (2018) 2647–2661.
  14. G.G. Lenzi, R.F. Evangelista, E.R. Duarte, L.M.S. Colpini, A.C. Fornari, R. Menechini Neto, L.M.M. Jorge, O.A.A. Santos, Photocatalytic degradation of textile reactive dye using artificial neural network modeling approach, Desal. Water Treat., 57 (2016) 14132–14144.
  15. A. Akbarpour, A. Khataee, M. Fathinia, B. Vahid, Development of kinetic models for photoassisted electrochemical process using Ti/RuO2 anode and carbon nanotube-based O2-diffusion cathode, Electrochim. Acta, 187 (2016) 300–311.
  16. G.R. Oliveira, A.V. Santos, A.S. Lima, C.M.F. Soares, M.S. Leite, Neural modelling in adsorption column of cholesterol-removal efficiency from milk, LWT-Food Sci. Technol., 64 (2015) 632–638.
  17. M.R. Gadekar, M.M. Ahammed, Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks, Desal. Water Treat., 57 (2016) 26392–26400.
  18. Y.M. da Silva Veloso, M.M. de Almeida, O.L.S. de Alsina, M.S. Leite, Artificial neural network model for the flow regime recognition in the drying of guava pieces in the spouted bed, Chem. Eng. Commun., 207 (2019) 549–558.
  19. Y.M. da Silva Veloso, M.M. de Almeida, O.L.S. de Alsina, M.L. Passos, A.S. Mujumdar, M.S. Leite, Hybrid phenomenological/ANN-PSO modelling of a deformable material in spouted bed drying process, Powder Technol., 366 (2020) 185–196.
  20. O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: a survey, Heliyon, 4 (2018) e00938.
  21. V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research, Eng. Appl. Artif. Intell., 60 (2017) 97–116.
  22. A.R. Khataee, M.B. Kasiri, Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem, 331 (2010) 86–100.
  23. F. Salehi, S.M.A. Razavi, Modeling of waste brine nanofiltration process using artificial neural network and adaptive neurofuzzy inference system, Desal. Water Treat., 57 (2016) 14369–14378.
  24. N. Messikh, M. Chiha, F. Ahmedchekkat, A. Al Bsoul, Application of radial basis function neural network for removal of copper using an emulsion liquid membrane process assisted by ultrasound, Desal. Water Treat., 56 (2015) 399–408.
  25. S. Azadi, A. Karimi-Jashni, S. Javadpour, Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: application of artificial neural network and genetic algorithm, Process Saf. Environ. Prot., 117 (2018) 267–277.
  26. A. Afram, F. Janabi-Sharifi, A.S. Fung, K. Raahemifar, Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: a state of the art review and case study of a residential HVAC system, Energy Build., 141 (2017) 96–113.
  27. A. Picos, J.M. Peralta-Hernández, Genetic algorithm and artificial neural network model for prediction of discoloration dye from an electro-oxidation process in a press-type reactor, Water Sci. Technol., 78 (2018) 925–935.
  28. S. Chutipongtanate, V. Thongboonkerd, Systematic comparisons of artificial urine formulas for in vitro cellular study, Anal. Biochem., 402 (2010) 110–112.
  29. F. Gozzi, I. Sirés, A. Thiam, S.C. de Oliveira, A.M. Junior, E. Brillas, Treatment of single and mixed pesticide formulations by solar photoelectro-Fenton using a flow plant, Chem. Eng. J., 310 (2017) 503–513.
  30. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, Published as a Conference Paper at the 3rd International Conference for Learning Representations, San Diego, 2015. Available at: http://arxiv.org/abs/1412.6980 (accessed June 14, 2019).
  31. Y. Lu, J. Lund, J. Boyd-Graber, Why ADAGRAD Fails for Online Topic Modeling, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, 2017, pp. 446–451.
  32. L. Das, U. Maity, J.K. Basu, The photocatalytic degradation of carbamazepine and prediction by artificial neural networks, Process Saf. Environ. Prot., 92 (2014) 888–895.
  33. J.R. Steter, E. Brillas, I. Sirés, On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media, Electrochim. Acta, 222 (2016) 1464–1474.
  34. M. Murugananthan, S. Yoshihara, T. Rakuma, N. Uehara, T. Shirakashi, Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode, Electrochim. Acta, 52 (2007) 3242–3249.