References

  1. M.Y. Wang, X.H. Zhang, Y. L. Chen, A. Zhang, Estimation of the desorption energy of dichloromethane and water in MIL-53 by DSC and ab-initio calculations, Sci. China Chem., 59 (2016) 398–404.
  2. S. Kumagai, Two offset printing workers with cholangiocarcinoma, J. Occup. Health, 56 (2014) 164–168.
  3. B. Pavoni, D. Drusian, A. Giacometti, M. Zanette, Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon, Water Res., 40 (2006) 3571–3579.
  4. C. Wen, B.A. Bassig, R. Vermeulen, V.J. Seow, W. Hu, M.P. Purdue, H. Huang, N. Rothman, Q. Lan, A review of human exposure to dichloromethane, perchloroethylene and carbon tetrachloride in China, Ann. Epidemiol., 24 (2014) 688–688, doi: 10.1016/j.annepidem.2014.06.034.
  5. T.A. Saleh, K.R. Alhooshani, M.S.A. Abdelbassit, Evaluation of AC/ZnO composite for sorption of dichloromethane, trichloromethane and carbon tetrachloride: kinetics and isotherms, J. Taiwan Inst. Chem. Eng., 55 (2015) 159–169.
  6. K.P. Ramaiah, D. Satyasri, S. Sridhar, A. Krishnaiah, Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers, J. Hazard. Mater., 261 (2013) 362–371.
  7. X. Liang, P. Wang, M. Li, Q. Zhang, Z. Wang, Y. Dai, X. Zhang, Y. Liu, M.-H. Whangbo, B. Huang, Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation, Appl. Catal., B, 220 (2018) 356–361.
  8. W. Cui, J. Li, F. Dong, Y. Sun, G. Jiang, W. Cen, S.C. Lee, Z. Wu, Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride, Environ. Sci. Technol., 51 (2017) 10682–10690.
  9. S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity, J. Alloys Compd., 741 (2018) 622–632.
  10. M.B. Tahir, M. Sagir, N. Abas, Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production, Int. J. Hydrogen Energy, 44 (2019) 24690–24697.
  11. J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater., 172 (2009) 1520–1526.
  12. B. Chai, X. Wang, S.Q. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity, Ceram. Int., 40 (2014) 429–435.
  13. F. Li, J.F. Wu, Q.H. Qin, Z. Li, X.T. Huang, A facile method to prepare monodispersed ZnO-Ag core-shell microspheres, Superlattices Microstruct., 47 (2010) 232–240.
  14. Y.G. Xu, H. Xu, H.M. Li, J.X. Xia, C.T. Liu, L. Liu, Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO, J. Alloys Compd., 509 (2011) 3286–3292.
  15. Y. Peng, S.C. Qin, W.S. Wang, A.W. Xu, Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability, CrystEngComm, 15 (2013) 6518–6525.
  16. X.H. Huang, J.B. Wu, Y. Lin, R.Q. Guo, W.W. Zhong, Ag decorated hierarchical structured ZnO microspheres and their enhanced electrochemical performance for lithium ion batteries, Int. J. Electrochem. Sci., 9 (2014) 6707–6716.
  17. Q. Deng, H. Tang, G. Liu, X.P. Song, G.P. Xu, Q. Li, D.H.L. Ng, G.Z. Wang, The fabrication and photocatalytic performances of flower-like Ag nanoparticles/ZnO nanosheets-assembled microspheres, Appl. Surf. Sci., 331 (2015) 50–57.
  18. H.R. Liu, Y.C. Hu, Z.X. Zhang, X.G. Liu, H.S. Jia, B.S. Xu, Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation, Appl. Surf. Sci., 355 (2015) 644–652.
  19. H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, E. Rafiee, D.W. Bahnemann, A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater, J. Hazard. Mater., 369 (2019) 384–397.
  20. T.M. Bilal, M. Sagir, Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production, Sep. Purif. Technol., 209 (2018) 94–102.
  21. X.H. Guo, J.Q. Ma, H.G. Ge, Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core-shell submicrospheres, J. Phys. Chem. Solids, 74 (2013) 784–788.
  22. S.S. Patil, R.H. Patil, S.B. Kale, M.S. Tamboli, J.D. Ambekar, W.N. Gade, S.S. Kolekar, B.B. Kale, Nanostructured microspheres of silver@zinc oxide: an excellent impeder of bacterial growth and biofilm, J. Nanopart. Res., 16 (2014) 1–11.
  23. J.W. Tringe, H.W. Levie, S.K. McCall, N.E. Testlich, M.A. Wall, C.A. Orme, M.J. Mattews, Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres, Appl. Phys. A, 109 (2012) 15–23.
  24. H.Y. Wu, W.J. Jian, H.F. Dang, X.F. Zha, J.H. Li, Hierarchical Ag-ZnO microspheres with enhanced photocatalytic degradation activities, Pol. J. Environ. Stud., 26 (2017) 871–880.
  25. P. Fageria, S. Gangopadhyay, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light, RSC Adv., 4 (2014) 24962–24972.
  26. W.W. Lu, S.Y. Gao, J.J. Wang, One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance, J. Phys. Chem. C, 112 (2008) 16792–16800.
  27. D.D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun AgZnO heterostructured nanofibers, Chem. Mater., 21 (2009) 3479–3484.
  28. G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity, J. Phys. Chem. C, 115 (2011) 7145–7152.
  29. J. Rodriguez-Fernandez, A.M. Funston, J. Perez-Juste, R.A. Alvarez-Puebla, L.M. Liz-Marzan, P. Mulvaney, The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres, Phys. Chem. Chem. Phys., 11 (2009) 5909–5914.
  30. Y. Cheng, L. An, J. Lan, F. Gao, R.Q. Tan, X.M. Li, G.H. Wang, Facile synthesis of pompon-like ZnO-Ag nanocomposites and their enhanced photocatalytic performance, Mater. Res. Bull., 48 (2013) 4287–4293.
  31. Y.M. Liang, N. Guo, L.L. Li, R.Q. Li, G.J. Ji, S.C. Gan, Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance, Appl. Surf. Sci., 332 (2015) 32–39.
  32. N.R. Khalid, M. Liaqat, M.B. Tahir, G. Nabi, T. Iqbal, N.A. Niaz, The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution, Ceram. Int., 44 (2018) 546–549.
  33. Z.B. Xu, J.P. Yan, L. Wu, Study on preparation and photocatalytic activity of ZnO hollow spheres, J. Synth. Cryst., 41 (2012) 1722–1725 (in Chinese).
  34. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•OH) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  35. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater., 182 (2010) 123–129.
  36. L.Z. Sun, S.Z. Zhao, Z.L. Gao, Z.Q. Cheng, Controllable synthesis of Ag decorated ZnO nanofibers for enhanced photocatalysis, Chem. J. Chin. Univ., 38 (2017) 907–914.
  37. H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi, M.Y. Choi, Enhanced photocatalytic degradation of lindane using metal-semiconductor Zn@ZnO and ZnO/Ag nanostructures, J. Environ. Sci., 74 (2018) 107–115.
  38. C. Yu, D.B. Zeng, Q.Z. Fan, K. Yang, J.L. Zeng, L.F. Wei, J.H. Yi, H.B. Ji, The distinct role of boron doping in Sn3O4 microspheres for synergistic removal of phenols and Cr(VI) in simulated wastewater, Environ. Sci. Nano, 7 (2020) 286–303.
  39. D.B. Zeng, C.L. Yu, Q.Z. Fan, J.L. Zeng, L.F. We, Z.S. Li, K. Yang, H.B. Ji, Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants, Chem. Eng. J., 391 (2020) 123–607.
  40. M.B. Tahir, G. Nabi, N.R. Khalid, M. Rafique, Role of europium on WO3 performance under visible-light for photocatalytic activity, Ceram. Int., 44 (2018)5705–5709.
  41. K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727 (2017) 792–820.
  42. C. Gu, C. Cheng, H. Huang, T. Wong, N. Wang, T.Y. Zhang, Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals, Cryst. Growth Des., 9 (2009) 3278–3285.
  43. J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science, 347 (2015) 970–974.
  44. H. Kawaguchi, Steady-state concentrations of hydroxyl radical in titanium dioxide aqueous suspensions, Chemosphere, 22 (1991) 1003–1009.
  45. M.D. Bhatt, G. Lee, J.S. Lee, Screening of oxygen-reductionreaction- efficient electrocatalysts based on Ag-M (M = 3d, 4d, and 5d transition metals) nanoalloys: a density functional theory study, Energy Fuel, 31 (2017) 1874–1881.
  46. Y. Lai, M. Meng, Y. Yu, One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation, Appl. Catal., B, 100 (2010) 491–501.