References

  1. K.T. Jahromi, Pesticides Toxicology, 5th ed, University of Tehran Press, Tehran, Iran, 2013, pp. 407–500.
  2. Y. Zang, K. Pagilla, Treatment of malathion pesticide waste water with nanofiltration and photo-Fenton oxidation, Desalination, 263 (2010) 36–44.
  3. A.M. Fadaei, M.H. Dehghani, S. Nasseri, A.H. Mahvi, N. Rastkari, M. Shayeghi, Organophosphorous pesticides in surface water of Iran, Bull. Environ. Contam. Toxicol., 88 (2012) 867–869.
  4. M. Hiran, K.H. Sanaullah, The effect of endosulafanon the testes of bluegill fish, Lepomis macrochirus: a histopathological study, Arch. Environ. Contam. Toxicol., 51 (2006) 149–51.
  5. A. Karataş, Toxic effects of diazinon on adult individuals of Drosophila melanogaster, J. Appl. Biol. Sci., 3 (2009) 102–108.
  6. P. Moudgil, A. Sharma, A.K. Tiwarg, Potention of spermicidal activity of 2,4-dichlorobenzamil by Lidocaine, Indian J. Exp. Biol., 40 (2002) 1373–1377.
  7. L. Saabia, E. Bustosobregon, Melanin prevent damage elicited by the organophosphorous pesticide diazinon on the mouse testis, Ecotoxicol. Environ. Saf., 72 (2009) 938–942.
  8. M.I. Yousef, K.S. Salehen, Protective role of isoflavones against the toxic effect of cypermethrin on semen quality and testosterone Levels of rabbits, J. Environ. Sci. Health, 38 (2003) 463–478.
  9. Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater., 241 (2012) 323–330.
  10. K. Del Ángel-Sanchez, O. Vázquez-Cuchillo, A. Aguilar-Elguezabal, A. Cruz- López, A. Herrera-Gómez, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid under visible light: effect of synthesis route, Mater. Chem. Phys., 139 (2013) 423–430.
  11. F. Ghanbari, M. Moradi, Electrooxidation Processes for Dye Degradation and Colored Wastewater Treatment, R.K. Gautam, M.C. Chattopadhyaya, Eds., Advanced Nanomaterials for Wastewater Remediation, CRC Press LLC, London, 2016, pp. 111–158.
  12. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, M. Omidinasab, Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro- Fenton and Co3O4/UV/peroxymonosulfate, Chem. Eng. J., 308 (2017) 142–150.
  13. N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater, Process Saf. Environ. Prot., 102 (2016) 462–472.
  14. W.D. Oh, Z. Dong, T.T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects, Appl. Catal. B, 194 (2016) 169–201.
  15. Y.H. Guan, J. Ma, X.C. Li, J.Y. Fang, L.W. Chen, Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/ peroxymonosulfate system, Environ. Sci. Technol., 45 (2011) 9308–9314.
  16. N. Jaafarzadeh, F. Ghanbari, M. Moradi, Photo-electrooxidation assisted peroxymonosulfate for decolorization of acid brown 14 from aqueous solution, Korean J. Chem. Eng., 32 (2015) 458–464.
  17. H.T. Chandran, S. Thangavel, C.V. Jipsa, G. Venugopal, Study on inorganic oxidants assisted sonocatalytic degradation of Resazurin dye in presence of β-SnWO4 nanoparticles, Mater. Sci. Semicond. Process., 27 (2014) 212–219.
  18. X. Cheng, H. Liang, A. Ding, X. Tang, B. Liu, X. Zhu, Z. Gan, D. Wu, G. Li, Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: control of natural organic matter fouling and degradation of atrazine, Water Res., 113 (2017) 32–41.
  19. F. Ghanbari, M. Moradi, M. Manshouri, Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper, J. Environ. Chem. Eng., 2 (2014) 1846–1851.
  20. B.T. Zhang, Y. Zhang, Y.G. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Environ. Sci. Technol., 45 (2015) 1756–1800.
  21. F.I. Hai, K. Yamamoto, K. Fukushi, Hybrid treatment systems for dye wastewater, Crit. Rev. Environ. Sci. Technol., 37 (2007) 315–377.
  22. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36 (2006) 1–84.
  23. M. Munoz, Z.M. Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation–a review, Appl. Catal., B, 176 (2015) 249–265.
  24. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review, Chem. Eng. J., 310 (2017) 41–62.
  25. P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal., B, 181 (2016) 103–117.
  26. J. He, X. Yang, B. Men, D. Wang, Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review, J. Environ. Sci., 39 (2016) 97–109.
  27. D. Wan, W. Li, G. Wang, L. Lu, X. Wei, Degradation of p-nitrophenol using magnetic Fe0/Fe3O4/coke composite as a heterogeneous Fenton-like catalyst, Sci. Total Environ., 574 (2017) 1326–1334.
  28. H.T. Dang, T.M.T. Nguyen, S.Q. Thi, T.T. Nguyen, Magnetic CuFe2O4 prepared by polymeric precursor method as a reusable heterogeneous Fenton-like catalyst for the efficient removal of methylene blue, Chem. Eng. Commun., 203 (2016) 1260–1268.
  29. V.K. Garg, V.K. Sharma, E. Kuzmann, Purification of water by ferrites-mini review, ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation, ACS Publ., 1 (2016) 137–143.
  30. T. Zhang, H. Zhu, J.-P. Croué, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol., 47 (2013) 2784–2791.
  31. L. Zou, Q. Wang, X. Shen, Z. Wang, M. Jing, Z. Luo, Fabrication and dye removal performance of magnetic CuFe2O4@CeO2 nanofibers, Appl. Surf. Sci., 332 (2015) 674–681.
  32. X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
  33. F. Qi, W. Chu, B. Xu, Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: the reaction and transformation, Chem. Eng. J., 262 (2015) 552–562.
  34. T. Zhang, Y. Chen, T. Leiknes, Oxidation of refractory benzothiazoles with PMS/CuFe2O4: kinetics and transformation intermediates, Environ. Sci. Technol., 50 (2016) 1–11.
  35. N.M. Mahmoodi, Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method, Desalination, 279 (2011) 332–337.
  36. F.G. Nematollah Jaafarzadeh, M. Ahmadi, Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/ magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes, Chem. Eng. J., 320 (2017) 1–12.
  37. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., APHA, Washington, DC, 1999.
  38. A.I. Vogel, Vogel’s Textbook of Quantitative Chemical Analysis, Longman Scientific & Technical, London, 1989.
  39. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Synthesis of magnetic core/shell carbon nanosphere supported manganese catalysts for oxidation of organics in water by peroxymonosulfate, J. Colloid Interface Sci., 433 (2014) 68–75.
  40. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals, Chem. Eng. J., 245 (2014) 1–9.
  41. P. Jing, J. Li, L. Pan, J. Wang, X. Sun, Q. Liu, Efficient photocatalytic degradation of acid fuchsin in aqueous solution using separate porous tetragonal-CuFe2O4 nanotubes, J. Hazard. Mater., 284 (2015) 163–170.
  42. Y.S. Jung, W.T. Lim, J.Y. Park, Y.H. Kim, Effect of pH on Fenton and Fenton‐like oxidation, Environ. Technol., 30 (2009) 183–190.
  43. Q. Chen, F. Ji, T. Liu, P. Yan, W. Guan, X. Xu, Synergistic effect of bifunctional Co–TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process, Chem. Eng. J., 229 (2013) 57–65.
  44. N. Yang, J. Cui, L. Zhang, W. Xiao, A.N. Alshawabkeh, X. Mao, Iron electrolysis‐assisted peroxymonosulfate chemical oxidation for the remediation of chlorophenol‐contaminated groundwater, J. Chem. Technol. Biotechnol., 91 (2016) 938–947.
  45. Y.H. Huang, Y.F. Huang, C.I. Huang, C.Y. Chen, Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst, J. Hazard. Mater., 170 (2009) 1110–1118.
  46. J. Sun, M. Song, J. Feng, Y. Pi, Highly efficient degradation of ofloxacin by UV/Oxone/Co2+ oxidation process, Environ. Sci. Pollut. Res., 19 (2012) 1536–1543.
  47. J.H. Sun, S.P. Sun, J. Sun, R.X. Sun, L.P. Qiao, H.Q. Guo, M.H. Fan, Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation, Ultrason. Sonochem., 14 (2007) 761–766.
  48. S. Akbari, F. Ghanbari, M. Moradi, Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: applying low current density for oxidation mechanism, Chem. Eng. J., 294 (2016) 298–307.
  49. L. Guo, J. Ding, M. Ou, Q. Zhong, Low-temperature NOx (x = 1, 2) removal with •OH radicals from catalytic ozonation over α-FeOOH, Ozone: Sci. Eng., 38 (2016) 382–394.
  50. S.K. Ling, S. Wang, Y. Peng, Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate, J. Hazard. Mater., 178 (2010) 385–389.
  51. J. Madhavan, P. Maruthamuthu, S. Murugesan, M. Ashokkumar, Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent, Appl. Catal., A, 368 (2009) 35–39.
  52. J. Madhavan, B. Muthuraaman, S. Murugesan, S. Anandan, P. Maruthamuthu, Peroxomonosulphate, an efficient oxidant for the photocatalysed degradation of a textile dye, acid red 88, Sol. Energy Mater. Solar Cells, 90 (2006) 1875–1887.
  53. Y. Yang, J. Jiang, X. Lu, J. Ma, Y. Liu, Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process, Environ. Sci. Technol., 49 (2015) 25–34.
  54. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/ magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes, Chem. Eng. J., 320 (2017) 436–447.
  55. J.L. Rodríguez, M.A. Valenzuela, H. Tiznado, T. Poznyak, I. Chaírez, D. Magallanes, A comparative study of aluminasupported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid, J. Nano Res., 19 (2017) 41–54.
  56. B. Ying, G. Lin, L. Jin, Y. Zhao, T. Zhang, J. Tang, Adsorption and degradation of 2,4-dichlorophenoxyacetic acid in spiked soil with Fe0 nanoparticles supported by biochar, Acta Agric. Scand. Sect. B, 65 (2015) 215–221.
  57. Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, S. Wang, Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants, J. Hazard. Mater., 270 (2014) 61–70.
  58. X. Liu, Z. Zhou, G. Jing, J. Fang, Catalytic ozonation of Acid Red B in aqueous solution over a Fe–Cu–O catalyst, Sep. Purif. Technol., 115 (2013) 129–135.
  59. Y. Nie, S. Xing, C. Hu, J. Qu, Efficient removal of toxic pollutants over Fe–Co/ZrO2 bimetallic catalyst with ozone, Catal. Lett., 142 (2012) 1026–1032.
  60. P.R. Shukla, S. Wang, H. Sun, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal., B, 100 (2010) 529–534.
  61. P. Shi, R. Su, S. Zhu, M. Zhu, D. Li, S. Xu, Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water, J. Hazard. Mater., 229 (2012) 331–339.
  62. Y. Yao, C. Xu, J. Qin, Synthesis of magnetic cobalt nanoparticles anchored on graphene nanosheets and catalytic decomposition of orange II, Ind. Eng. Chem. Res., 52 (2013) 17341–17350.
  63. F.J. Beltran, Ozone Reaction Kinetics for Water and Wastewater Systems, CRC Press, Boca Raton, FL, 2003.
  64. F.J. Beltran, F.J. Rivas, R. Montero-de-Espinosa, Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor, Appl. Catal., B, 39 (2002) 221–231.
  65. Y.H. Guan, J. Ma, Y.M. Ren, Y.L. Liu, J.Y. Xiao, L. Lin, C. Zhang, Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals, Water Res., 47 (2013) 5431–5438.
  66. F. Ji, C. Li, L. Deng, Performance of CuO/oxone system: heterogeneous catalytic oxidation of phenol at ambient conditions, Chem. Eng. J., 178 (2011) 239–243.
  67. Y. Feng, D. Wu, Y. Deng, T. Zhang, K. Shih, Sulfate radicalmediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanisms, Environ. Sci. Technol., 50 (2016) 3119–3127.
  68. W.D. Oh, S.K. Lua, Z. Dong, T.T. Lim, Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes, J. Hazard. Mater., 284 (2015) 1–9.
  69. J. Lu, X. Wei, Y. Chang, S. Tian, Y. Xiong, Role of Mg in mesoporous MgFe2O4 for efficient catalytic ozonation of Acid Orange II, J. Chem. Technol. Biotechnol., 91 (2015) 985–993.
  70. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B, 99 (2010) 27–42.
  71. J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway, Chem. Eng. J., 276 (2015) 193–204.
  72. Y. Wang, W. Chu, Degradation of a xanthene dye by Fe(II)-mediated activation of oxone process, J. Hazard. Mater., 186 (2011) 1455–1461.
  73. M. Muthukumar, N. Selvakumar, Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation, Dyes Pigm., 62 (2004) 221–228.
  74. J. Zhou, D. Xiao, Y. Guo, C. Fang, X. Lou, Z. Wang, J. Liu, Transformations of chloro and 1051 nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol, Chemosphere, 134 (2015) 6–11.
  75. Z. Wang, Y. Guo, L. Xu, J. Liu, Effects of chloride ions on bleaching of azo dyes by 1049 Co2+/oxone regent: kinetic analysis, J. Hazard. Mater., 190 (2011) 1083–1087.
  76. S. Naumov, G. Mark, C. Sonntag, The reactions of nitrite ion with ozone in aqueous solution – new experimental data and quantum-chemical considerations, Ozone: Sci. Eng., 32 (2010) 430–434.
  77. Y. Ji, C. Dong, D. Kong, J. Lu, New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms, J. Hazard. Mater., 285 (2015) 491–500.
  78. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  79. Y. Ji, Y. Fan, K. Liu, D. Kong, J. Lu, Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds, Water Res., 87 (2015) 1–9.
  80. F. Qi, W. Chu, B. Xu, Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources, Chem. Eng. J., 235 (2014) 10–18.
  81. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  82. T. Zeng, X. Zhang, S. Wang, H. Niu, Y. Cai, Spatial confinement of a Co3O4 catalyst in hollow metal–organic frameworks as a nanoreactor for improved degradation of organic pollutants, Environ. Sci. Technol., 49 (2015) 2350–2357.
  83. M. Ahmadi, F. Ghanbari, M. Moradi, Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of pH on sulfate and hydroxyl radicals, Water Sci. Technol., 72 (2015) 2095–2102.
  84. Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.Y. Pang, J. Li, X.T. Lu, L.P. Yuan, Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process, Environ. Sci. Technol., 49 (2015) 12941–12950.