References
- E. Szatyłowicz, I. Skoczko, Magnetic field usage supported
filtration through different filter materials, Water, 11 (2019)
1584, doi: 10.3390/w11081584.
- T. Hayat, M. Rashid, M.I. Khan, A. Alsaedi, Melting heat
transfer and induced magnetic field effects on flow of water
based nanofluid over a rotating disk with variable thickness,
Results Phys., 9 (2018) 1618–1630.
- A. Hatamie, H. Parham, B. Zargar, Z. Heidari, Evaluating
magnetic nano-ferrofluid as a novel coagulant for surface
water treatment, J. Mol. Liq., 219 (2016) 694–702.
- O. Carrier, N. Shahidzadeh-Bonn, R. Zargar, M. Aytouna,
M. Habibi, J. Eggers, D. Bonn, Evaporation of water: evaporation
rate and collective effects, J. Fluid Mech., 798 (2016) 774–786.
- D. Rish, S.R. Luo, B. Kurtz, T.F. Luo, Exceptional ion rejection
ability of directional solvent for non-membrane desalination,
Appl. Phys. Lett., 104 (2014) 024102, doi: 10.1063/1.4861835.
- M. Sammer, C. Kamp, A. Paulitsch-Fuchs, A. Wexler,
C. Buisman, E. Fuchs, Strong gradients in weak magnetic
fields induce DOLLOP formation in tap water, Water,
8 (2016) 79, doi: 10.3390/w8030079.
- A.A.A.A. Al-Rashed, K. Kalidasan, L. Kolsi, A. Aydi,
E.H. Malekshah, A.K. Hussein, P. Rajesh Kanna, Threedimensional
investigation of the effects of external magnetic
field inclination on laminar natural convection heat transfer
in CNT–water nanofluid filled cavity, J. Mol. Liq., 252 (2018)
454–468.
- A.R. Al-Badri, A.A.Y. Al-Waaly, The influence of chilled water
on the performance of direct evaporative cooling, Energy
Build., 155 (2017) 143–150.
- K. Hisatake, S. Tanaka, Y. Aizawa, Evaporation rate of water
in a vessel, J. Appl. Phys., 73 (1993) 7395–7401.
- T. Kokalj, H. Cho, M. Jenko, L.P. Lee, Biologically inspired
porous cooling membrane using arrayed-droplets evaporation,
Appl. Phys. Lett., 96 (2010) 163703, doi: 10.1063/1.3332398.
- Z. Huang, X.Y. Li, H. Yuan, Y.H. Feng, X.X. Zhang,
Hydrophobically modified nanoparticle suspensions to enhance
water evaporation rate, Appl. Phys. Lett., 109 (2016) 161602,
doi: 10.1063/1.4964830.
- E. Esmaeilnezhad, H.J. Choi, M. Schaffie, M. Gholizadeh,
M. Ranjbar, Characteristics and applications of magnetized
water as a green technology, J. Cleaner Prod., 161 (2017) 908–921.
- L.L. Jiang, X.Y. Yao, H.T. Yu, X.G. Hou, Z.S. Zou, F.M. Shen,
C.T. Li, Effect of permanent magnetic field on water association
in circulating water, Desal. Water Treat., 79 (2017) 152–160.
- L.L. Jiang, J.L. Zhang, D.K. Li, Effects of permanent magnetic
field on calcium carbonate scaling of circulating water, Desal.
Water Treat., 53 (2015) 1275–1285.
- L. Holysz, A. Szczes, E. Chibowski, Effects of a static magnetic
field on water and electrolyte solutions, J. Colloid Interface
Sci., 316 (2007) 996–1002.
- Y.Z. Guo, D.C. Yin, H.L. Cao, J.Y. Shi, C.Y. Zhang, Y.M. Liu,
H.H. Huang, Y. Liu, Y. Wang, W.H. Guo, A.R. Qian, P. Shang,
Evaporation rate of water as a function of a magnetic field and
field gradient, Int. J. Mol. Sci., 13 (2012) 16916–16928.
- A. Seyfi, R. Afzalzadeh, A. Hajnorouzi, Increase in water
evaporation rate with increase in static magnetic field perpendicular
to water-air interface, Chem. Eng. Process., 120 (2017)
195–200.
- E. Chibowski, A. Szczes, Magnetic water treatment-a review
of the latest approaches, Chemosphere, 203 (2018) 54–67.
- H. Zhao, F. Zhang, H. Hu, S. Liu, J. Han, Experimental study on
freezing of liquids under static magnetic field, Chin. J. Chem.
Eng., 25 (2017) 1288–1293.
- W.W. Zhang, L.Q. Li, G.Y. Zhang, S.C. Zhang, Interfacial
structure and wetting behavior of water droplets on graphene
under a static magnetic field, J. Mol. Liq., 269 (2018) 187–192.
- S.H. Lee, S.I. Jeon, Y.S. Kim, S.K. Lee, Changes in the electrical
conductivity, infrared absorption, and surface tension of
partially-degassed and magnetically-treated water, J. Mol. Liq.,
187 (2013) 230–237.
- B. Mahmoud, M. Yosra, A. Nadia, Effects of magnetic treatment
on scaling power of hard waters, Sep. Purif. Technol., 171 (2016)
88–92.
- H. Wei, Y. Wang, J. Luo, Influence of magnetic water on earlyage
shrinkage cracking of concrete, Constr. Build. Mater.,
147 (2017) 91–100.
- S.L.F. Lopez, M.R.M. Virgen, V.H. Montoya, M.A.M. Moran,
R.T. Gomez, N.A.R. Vazquez, M.A.P. Cruz, M.S.E. Gonzalez,
Effect of an external magnetic field applied in batch adsorption
systems: removal of dyes and heavy metals in binary solutions,
J. Mol. Liq., 269 (2018) 450–460.
- B. Liu, B. Gao, X. Xu, W. Hong, Q. Yue, Y. Wang, Y. Su,
The combined use of magnetic field and iron-based complex
in advanced treatment of pulp and paper wastewater, Chem.
Eng. J., 178 (2011) 232–238.
- Y. Wang, H. Wei, Z. Li, Effect of magnetic field on the physical
properties of water, Results Phys., 8 (2018) 262–267.
- L.L. Jiang, X.Y. Yao, H.T. Yu, X.G. Hou, Z.S. Zou, F.M. Shen,
C.T. Li, Effect of permanent magnetic field on scale inhibition
property of circulating water, Water Sci. Technol., 76 (2017)
1981–1991.
- A. Szcześ, E. Chibowski, L. Hołysz, P. Rafalski, Effects of
static magnetic field on water at kinetic condition, Chem. Eng.
Process., 50 (2011) 124–127.
- J. Sohaili, H.S. Shi, B. Lavania, N.H. Zardari, N. Ahmad,
S.K. Muniyandi, Removal of scale deposition on pipe walls
by using magnetic field treatment and the effects of magnetic
strength, J. Cleaner Prod., 139 (2016) 1393–1399.
- R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields
on water molecular hydrogen bonds, J. Mol. Struct., 938 (2009)
15–19.
- L. Otero, A.C. Rodríguez, M. Pérez-Mateos, P.D. Sanz, Effects
of magnetic fields on freezing: application to biological
products, Compr. Rev. Food. Sci. Food Saf., 15 (2016) 646–667.
- F. Alimi, A. Boubakri, M.M. Tlili, M. Ben Amor, A comprehensive
factorial design study of variables affecting CaCO3 scaling
under magnetic water treatment, Water Sci. Technol., 70 (2014)
1355–1362.