References
- ESCWA Water Development Report 3, Role of Desalination
in Addressing Water Scarcity, United Nations Publication,
New York, NY, 2009.
- F. Wali, The Future of Desalination Research in the Middle
East, Nature Middle East, 2014.
- V.G. Gude, Desalination and water reuse to address global
water scarcity, Rev. Environ. Sci. Biotechnol., 16 (2017) 591–609.
- Desalination by the Numbers, International Desalination
Association, 2018.
- Y. Cohen, R. Semiat, A. Rahardianto, A perspective on reverse
osmosis water desalination: quest for sustainability, Am. Inst.
Chem. Eng., 63 (2017) 1771–1784.
- S.A. Abdul-Wahab, M.A. Al-Weshahi, Brine management:
substituting chlorine with on-site produced sodium
hypochlorite for environmentally improved desalination
processes, Water Resour. Manage., 23 (2009) 2437–2454.
- A.M. Bilton, R. Wiesman, A.F.M. Arif, S.M. Zubair, S. Dubowsky,
On the feasibility of community-scale photovoltaic-powered
reverse osmosis desalination systems for remote locations,
Renewable Energy, 36 (2011) 3246–3256.
- N. Voutchkov, Energy use for membrane seawater desalination
– current status and trends, Desalination, 431 (2018) 2–14.
- S. Lattemann, T. Höpner, Environmental impact and impact
assessment of seawater desalination, Desalination, 220 (2008)
1–15.
- F. Ameen, J.A. Stagner, D.S.-K. Ting, The carbon footprint
and environmental impact assessment of desalination, Int. J.
Environ. Stud., 75 (2018) 45–58.
- T.M. Missimer, R.G. Maliva, U.A. Whitaker, Environmental
issues in seawater reverse osmosis desalination: intakes and
outfalls, Desalination, 434 (2018) 198–215.
- J.L. Fuentes-Bargues, Analysis of the process of environmental
impact assessment for seawater desalination plants in Spain,
Desalination, 347 (2014) 166–174.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- National Research Council, Desalination, A National
Perspective, The National Academies Press, Washington,
DC, 2008.
- M. Latorre, Environmental impact of brine disposal on Posidonia
seagrasses, Desalination, 182 (2005) 517–524.
- E. Gacia, O. Invers, M. Manzanera, E. Ballesteros, J. Romero,
Impact of the brine from a desalination plant on a shallow
seagrass (Posidonia oceanica) meadow, Estuarine Coastal Shelf
Sci., 72 (2007) 579–590.
- A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S.W. Hasan,
Brine management methods: recent innovations and current
status, Desalination, 407 (2017) 1–23.
- J. Morillo, J. Usero, D. Rosado, H. El Bakouri, A. Riaza,
F.J. Bernaola, Comparative study of brine management
technologies
for desalination plants, Desalination, 336 (2014)
32–49.
- A.S. Sánchez, I.B.R. Nogueira, R.A. Kalid, Uses of the reject brine
from inland desalination for fish farming, Spirulina cultivation,
and irrigation of forage shrub and crops, Desalination,
364 (2015) 96–107.
- Y. Chen, X. Tang, R.V. Kapoore, C. Xu, S. Vaidyanathan,
Influence of nutrient status on the accumulation of biomass
and lipid in Nannochloropsis salina and Dunaliella salina, Energy
Convers. Manage., 106 (2015) 61–72.
- L. Jiang, S. Luo, X. Fan, Z. Yang, R. Guo, Biomass and lipid
production of marine microalgae using municipal wastewater
and high concentration of CO2, Appl. Energy, 88 (2011)
3336–3341.
- M.V. Jimenez-Perez, P. Sanchez-Castillo, O. Romera,
D. Fernandez-Moreno, C. Perez-Martinez, Growth and nutrient
removal in free and immobilized planktonic green algae isolated
from pig manure, Enzyme Microb. Technol., 34 (2004) 392–398.
- P. Lavens, P. Sorgeloos, Manual on the Production and Use
of Live Food for Aquaculture, FAO Fisheries Technical
Paper (FAO), Rome, 1996.
- K.P. Fawley, M.W. Fawley, Observations on the diversity and
ecology of freshwater Nannochloropsis (eustigmatophyceae),
with descriptions of new taxa, Protist, 158 (2007) 325–336.
- J. Liu, Y. Song, W. Qiu, Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review and analysis,
Renewable Sustainable Energy Rev., 72 (2017) 154–162.
- X.-N. Ma, T.-P. Chen, B. Yang, J. Liu, F. Chen, Lipid production
from Nannochloropsis, Mar. Drugs, 14 (2016) 1–18.
- L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi,
G. Bonini, M.R. Tredici, Microalgae for oil: strain selection,
induction of lipid synthesis and outdoor mass cultivation in
a low-cost photobioreactor, Biotechnol. Bioeng., 102 (2009)
100–112.
- R.R.L. Guillard, Culture of Phytoplankton for Feeding Marine
Invertebrates, W.L. Smith, M.H. Chanley, Eds., Culture of
Marine Invertebrate Animal, Plenum Press, New York,
NY, 1975, pp. 29–60.
- A.J. Martínez-Roldán, H.V. Perales-Vela, R.O. Cañizares-Villanueva, G. Torzillo, Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures,
J. Appl. Phycol., 26 (2014) 115–121.
- D. Simionato, E. Sforza, E.C. Carpinelli, A. Bertucco,
G.M. Giacometti, T. Morosinotto, Acclimation of Nannochloropsis
gaditana to different illumination regimes: effects on lipids
accumulation, Bioresour. Technol., 102 (2011) 6026–6032.
- X. Chen, Y. Goh, W. Tan, I. Hossain, W.N. Chen, R. Lau,
Lumostatic strategy for microalgae cultivation utilizing image
analysis and chlorophyll a content as design parameters,
Bioresour. Technol., 102 (2011) 6005–6012.
- G. Estefan, R. Sommer, J. Ryan, Methods of Soil, Plant, and
Water Analysis: A Manual for the West Asia and North
Africa region, 3rd ed., ICARDA, West Asia, 2013.
- A.D. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, Standard
Methods for the Examination of Water and Wastewater,
21st ed., Washington, DC, 2005.
- EPA, Methods for Determination of Metals in Environmental
Samples, Washington, DC, 1991.
- AOAC, Method of Analysis Association of Official Agriculture
Chemists, 16th ed., Washington, DC, 1995.
- C.J. Zhu, Y.K. Lee, Determination of biomass dry weight of
marine microalgae, J. Appl. Phycol., 9 (1997) 189–194.
- A.B. El-Sayed, M.G. Mahamoud, S.R. Hamed, Complementary
production of biofuels by the green alga Chlorella vulgaris,
Int. J. Renewable Energy Res., 5 (2015) 936–943.
- K.E. Dickinson, C.G. Whitney, P.J. Mcginn, Nutrient remediation
rates in municipal wastewater and their effect on biochemical
composition of the microalga Scenedesmus sp. AMDD, Algal
Res., 2 (2013) 127–134.
- K. Ichihara, Y. Fukubayashi, Preparation of fatty acid methyl
esters for gas-liquid chromatography, J. Lipid Res., 51 (2010)
635–640.
- T.S. Abu-Rezq, L. Al-Musallam, J. Al-Shimmari, P. Dias,
Optimum production conditions for different high-quality
marine algae, Hydrobiologia, 403 (1999) 97–107.
- N. Gu, Q. Lin, G. Li, G. Qin, J. Lin, L. Huang, Effect of
salinity change on biomass and biochemical composition
of Nannochloropsis oculata, J. World Aquacult. Soc., 43 (2012)
97–106.
- M.L. Bartley, W.J. Boeing, A.A. Corcoran, F.O. Holguin,
T. Schaub, Effects of salinity on growth and lipid accumulation
of biofuel microalga Nannochloropsis salina and invading
organisms, Biomass Bioenergy, 54 (2013) 83–88.
- Â.P. Matos, R. Feller, E. Helena, S. Moecke, S. Santanna, Biomass,
lipid productivities and fatty acids composition of marine
Nannochloropsis gaditana cultured in desalination concentrate,
Bioresour. Technol., 197 (2015) 48–55.
- W.A.F. Neto, C.R.B. Mendes, P.C. Abreu, Carotenoid production
by the marine microalgae Nannochloropsis oculata in different
low-cost culture media, Aquacult. Res., 49 (2018) 2527–2535.
- H. Campos, W.J. Boeing, B.N. Dungan, T. Schaub, Cultivating
the marine microalga Nannochloropsis salina under various
nitrogen sources: effect on biovolume yields, lipid content
and composition, and invasive organisms, Biomass Bioenergy,
66 (2014) 301–307.
- J.M.S. Rocha, J.E.C. Garcia, M.H.F. Henriques, Growth aspects
of the marine microalga Nannochloropsis gaditana, Biomol. Eng.,
20 (2003) 237–242.
- B. Cheirsilp, S. Torpee, Enhanced growth and lipid production
of microalgae under mixotrophic culture condition: effect
of light intensity, glucose concentration and fed-batch
cultivation, Bioresour. Technol., 110 (2012) 510–516.
- S.S. Kumar, A.Saramma, Effect of organic carbon compounds
on the growth and pigment composition of microalga
Nannochloropsis salina, Int. J. Appl. Environ. Sci., 12 (2017)
1707–1719.
- R.R.L. Guillard, J.H. Ryther, Studies of marine planktonic
diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea
(cleve) Gran., Can. J. Microbiol., 8 (1962) 229–239.
- K. Asulabh, G. Supriya, T. Ramachandra, Effect of Salinity
Concentrations on Growth Rate and Lipid Concentration in
Microcystis sp., Chlorococcum sp. and Chaetoceros sp, National
Conference on Conservation and Management of Wetland
Ecosystems, Indian Institute of Science, Bangalore, 2012.
- L. Recht, A. Zarka, S. Boussiba, Patterns of carbohydrate and
fatty acid changes under nitrogen starvation in the microalgae
Haematococcus pluvialis and Nannochloropsis sp., Appl. Microbiol.
Biotechnol., 94 (2012) 1495–1503.
- M.M. Ismail, Dual Benefits of Microalgae in Bioremediation,
Pollutant Removal and Biomass Valorization, A Review,
E.D. Bidoia, R.N. Montagnolli, Eds., Biodegradation, Pollutants
and Bioremediation Principles, CRC Press; Taylor & Francis
Group, Florida, 2021, pp. 174–192 (in press).