References
- D. Hoornweg, P. Bhada-Tata, C. Kennedy, Environment: waste
production must peak this century, Nature, 502 (2013)
615–617.
- L.J. Zhu, H.Y. Yang, Y. Zhao, K.J. Kang, Y. Liu, P.P. He,
Z.T. Wu, Z.M. Wei, Biochar combined with montmorillonite
amendments increase bioavailable organic nitrogen and
reduce nitrogen loss during composting, Bioresour. Technol.,
294 (2019) 122224, 1–9, doi: 10.1016/j.biortech.2019.12224.
- X.Y. Zhao, W.B. Tan, Q.L. Dang, R.F. Li, B.D. Xi, Enhanced biotic
contributions to the dechlorination of pentachlorophenol by
humus respiration from different compostable environments,
Chem. Eng. J., 361 (2019) 1565–1575.
- X.Q. Zhao, L. Xiong, M.M. Zhang, F.W. Bai, Towards efficient
bioethanol production from agricultural and forestry residues:
exploration of unique natural microorganisms in combination
with advanced strain engineering, Bioresour. Technol.,
215 (2016) 84–91.
- M.R. Teixeira, F.P. Camacho, V.S. Sousa, R. Bergamasco, Green
technologies for cyanobacteria and natural organic matter
water treatment using natural based products, J. Cleaner Prod.,
162 (2017) 484–490.
- O. Habeeb, R. Kanthasamy, S. Ezzuldin, O.A. Olalere,
Characterization of agriculture wastes based activated carbon
for removal of hydrogen sulfide from petroleum refinery waste
water, Mater. Today: Proc., 20 (2020) 588–594.
- L.G.V. Doren, R. Posmanik, F.A. Bicalho, J.W. Tester,
D.L. Sills, Prospects for energy recovery during hydrothermal
and biological processing of waste biomass, Bioresour.
Technol., 225 (2017) 67–74.
- L.C. Cao, C. Zhang, H.H. Chena, D.C.W. Tsang, G. Luo,
S.C. Zhang, J.M. Chen, Hydrothermal liquefaction of
agricultural and forestry wastes: state-of-the art review and
future prospects, Bioresour. Technol., 245 (2017) 1184–1193.
- N.A. Oladoja, Headway on natural polymeric coagulants in
water and wastewater treatment operations, J. Water Process
Eng., 6 (2015) 174–192.
- N. Zhou, H.G. Chen, Q.J. Feng, D.H. Yao, H.L. Chen, H.Y. Wang,
Z. Zhou, H.Y. Li, Y. Tian, X.Y. Lu, Effect of phosphoric acid on
the surface properties and Pb(II) adsorption mechanisms of
hydrochars prepared from fresh banana peels, J. Cleaner Prod.,
165 (2017a) 221–230.
- Y.T. Hameed, A. Idris, S.A. Hussain, N. Abdullah, H.C. Man,
Effect of pre-treatment with a tannin-based coagulant and
flocculant on a biofilm bacterial community and the nitrification
process in a municipal wastewater biofilm treatment unit,
J. Environ. Chem. Eng., 8 (2020) 103679, 1–7, doi: 10.1016/j.jece.2020.103679.
- D.C. Lin, Z.S. Yan, X.B. Tang, J.L. Wang, H. Liang, G.B. Li, Inorganic
coagulant induced gypsum scaling in nanofiltration process:
effects of coagulant concentration, coagulant conditioning time
and fouling strategies, Sci. Total Environ., 670 (2019) 685–695.
- Y. Fu, Y.Z. Wang, M.M. Su, Volume and mass reduction of
sludge formed by polymerized-organic-Al-Zn-Fe (POAZF)
coagulant in treating sewage, Desal. Water Treat., 57 (2016)
6239–6249.
- Y. Fu, D. Gao, X. Yu, A combined process of “short-time
coagulation-sedimentation-filtration”: behavior and mechanism
of poly-Si-Fe (PSF) coagulant, Desal. Water Treat., 171 (2019)
314–324.
- X.J. Hu, X.B. Zhang, H.H. Ngo, W.S. Guo, H.T. Wen, C.C. Li,
Y.C. Zhang, C.J. Ma, Comparison study on the ammonium
adsorption of the biochars derived from different kinds of fruit
peel, Sci. Total Environ., 707 (2020) 135544, 1–9, doi: 10.1016/j.
scitotenv.2019.135544.
- T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J.G. Zhang,
D.Q. Sun, X. Li, Contrasting effects of banana peels waste and
its biochar on greenhouse gas emissions and soil biochemical
properties, Process Saf. Environ. Prot., 122 (2019) 366–377.
- P. Khawas, A.J. Das, K.K. Dash, S.C. Deka, Thin-layer drying
characteristics of kachkal banana peel (Musa ABB) of Assam,
India, Int. Food Res. J., 21 (2014) 1011–1018.
- V.M. Komal, K.R. Virendra, Utilization of banana peels
for removal of strontium(II) from water, Environ. Technol.
Innovation, 11 (2018) 371–383.
- A.E. Nemr, O. Abdelwahab, A. El-Sikaily, A. Khaled, Removal
of direct blue-86 from aqueous solution by new activated
carbon developed from orange peel, J. Hazard Mater.,
161 (2009) 102–110.
- A. Ali, K. Saeed, Phenol removal from aqueous medium using
chemically modified banana peels as low-cost adsorbent, Desal.
Water Treat., 57 (2015) 11242–11254.
- J. Ma, S.S. Sun, K.Z. Chen, Facile and scalable synthesis of
magnetite/carbon adsorbents by recycling discarded fruit
peels and their potential usage in water treatment, Bioresour.
Technol., 233 (2017) 110–115.
- A. Cabral-Prieto, Orange peel+nanostructured zero-valent-iron
composite for the removal of hexavalent chromium in water,
Renewable Sustainable Energy Rev., 70 (2017) 814–821.
- V.S. Munagapati, Adsorption of anionic azo dye congo red
from aqueous solution by cationic modified orange peel
powder, J. Mol. Liq., 220 (2016) 540–548.
- N. Zhou, H.G. Chen, J.T. Xi, D.H. Yao, Z. Zhou, Y. Tian, X.Y. Lu,
Biochars with excellent Pb(II) adsorption property produced
from fresh and dehydrated banana peels via hydrothermal
carbonization, Bioresour. Technol., 232 (2017b) 204–210.
- Y. Fu, X.J. Meng, N.N. Lu, H.L. Jian, Y. Di, Characteristics
changes in banana peel coagulant during storage process, Int.
J. Environ. Sci. Technol., 16 (2019) 7747–7756.
- H. Salehizadeh, N. Yan, Recent advances in extracellular biopolymer
flocculants, Bioresour. Technol., 32 (2014) 1506–1522.
- Z. Li, R.W. Chen, H.Y. Lei, Z. Shan, T. Bai, Q. Yu, H.L. Li,
Characterization and flocculating properties of a novel
bioflocculant produced by Bacillus circulans, World J. Microbiol.
Biotechnol., 25 (2009) 745–752, doi: 10.1007/s11274-008-9943-8.
- S.P. Buthelezi, A.O. Olaniran, B. Pillay, Textile dye removal
from wastewater effluents using bioflocculants produced by
indigenous bacterial isolates, Molecules, 17 (2012) 14260–14274.
- Y.H. Wang, R.Q. Liu, W.F. Liu, L.B. Tong, Q.W. Wang,
R.N. Wang, Production of a Novel Bioflocculant by Culture of
Pseudomonas Alcaligenes Using Brewery Wastewater and Its
Application in Dye Removal, 2009 International Conference on
Energy and Environment Technology, Guilin, Guangxi, China,
2009.
- H. Salehizadeh, N. Yan, R. Farnood, Recent advances in
polysaccharide bio-based flocculants, Biotechnol. Adv.,
36 (2018) 92–119.
- Y.X. Wang, Study on Biofilocculation-Producing Origin of
Ruditapes philippinarum Coagulation Mud Based on Microbiome,
Master’s Thesis, Zhejiang Ocean University, Hangzhou, 2019
(in Chinese).
- M. Shahadat, T.T. Teng, M. Rafatullah, Z.A. Shaikh,
T.R. Sreekrishnan, S.W. Ali, Bacterial bioflocculants: a review
of recent advances and perspectives, Chem. Eng. J., 328 (2017)
1139–1152.