References
- A.T. Wolf, Water and human security, J. Contemp. Water Res.
Educ., 118 (2001) 29–37.
- C.P. Khedun, R.S. Flores, H. Rughoonundun, R.A. Kaiser,
World water supply and use: challenges for the future,
Encycl. Agric. Food Syst., 5 (2014) 450–465, doi: 10.1016/
B978-0-444-52512-3.00083-8.
- A. Ophir, A. Gendel, G. Kronenberg, The LT-MED process for
SW Cogen plants, Desal. Water Reuse, 4 (1994) 28–31.
- H. Liu, S.Q. Shen, L.Y. Gong, S. Chen, Shell-side two-phase
pressure drop and evaporation temperature drop on falling
film evaporation in a rotated square bundle, Appl. Thermal
Eng., 69 (2014) 214–220.
- A. Ophir, F. Lokiec, Advanced MED process for most economical
sea water desalination, Desalination, 182 (2005) 187–198.
- Y. Xue, X. Du, Z. Ge, L. Yang, Study on multi-effect distillation
of seawater with low-grade heat utilization of thermal power
generating unit, Appl. Thermal Eng., 141 (2018) 589–599.
- A. Al-Othman, N.N. Darwish, M. Qasim, M. Tawalbeh,
N.A. Darwish, N. Hilal, Nuclear desalination: a state-of-the-art
review, Desalination, 457 (2019) 39–61.
- J. Leblanc, J. Andrews, Low-Temperature Multi-Effect Evaporation
Desalination Systems Coupled with Salinity-Gradient
Solar Ponds, Proceedings of ISES World Congress, Berlin,
Heidelberg, 2008, pp. 2151–2157.
- N. Shekarchi, F. Shahnia, A comprehensive review of solardriven
desalination technologies for off-grid greenhouses,
Int. J. Energy Res., 43 (2019) 1357–1386.
- G. Venkatesan, S. Iniyan, R. Goic, A prototype flash cooling
desalination system using cooling water effluents, Int. J. Energy
Res., 37 (2013) 1132–1140.
- M. Luqman, I. Ghiat, M. Maroof, F.Z. Lahlou, Y. Bicer,
T. Al-Ansari, Application of the concept of a renewable
energy based-polygeneration system for sustainable thermal
desalination process-a thermodynamics’ perspective, Int.
J. Energy Res., 44 (2020) 12344–12362.
- A.A. Zhukauskas, Convective Transfer in Heat Exchangers,
Science Press, Moscow, 1982.
- M. Ishak, T.A. Tahseen, M.M. Rahman, Experimental
investigation on heat transfer and pressure drop characteristics
of air flow over a staggered flat tube bank in crossflow, Int.
J. Automot. Mech. Eng., 7 (2013) 900–911.
- R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for
isothermal two-phase, two-component flow in pipes, Chem.
Eng. Prog., 45 (1949) 39–48.
- D. Chisholm, A theoretical basis for the Lockhart-Martinelli
correlation for two-phase flow, Int. J. Heat Mass Transfer,
10 (1967) 1767–1778.
- D.S. Schrage, J.T. Hsu, M.K. Jensen, Two-phase pressure drop
in vertical crossflow across a horizontal tube bundle, AIChE J.,
34 (1988) 107–115.
- R. Dowlati, M. Kawaji, A.M.C. Chan, Pitch-to-diameter effect
on two-phase flow across an in-line tube bundle, AIChE J.,
36 (1990) 765–772.
- G.P. Xu, K.W. Tou, C.P. Tso, Two-phase void fraction and
pressure drop in horizontal crossflow across a tube bundle,
J. Fluids Eng., 120 (1998) 140–145.
- P.A. Feenstra, D.S. Weaver, R.L. Judd, An improved void
fraction model for two-phase cross-flow in horizontal tube
bundles, Int. J. Multiphase Flow, 26 (2000) 1851–1873.
- L. Consolini, D. Robinson, J.R. Thome, Void fraction and twophase
pressure drops for evaporating flow over horizontal tube
bundles, Heat Transfer Eng., 27 (2006) 5–21.
- J. Mitrovic, Influence of Tube Spacing and Flow Rate on Heat
Transfer from a Horizontal Tube to a Falling Liquid Film,
International Heat Transfer Conference Digital Library, Begel
House Inc., 1986.
- X. Hu, A.M. Jacobi, The intertube falling film: part 1-flow
characteristics, mode transitions, and hysteresis, J. Heat
Transfer, 118 (1996) 616–625.
- I.D.R. Grant, D. Chisholm, Two-phase flow on the shell-side
of a segmentally baffled shell-and-tube heat exchanger, J. Heat
Transfer, 101 (1979) 38–42.
- R. Ulbrich, D. Mewes, Vertical, upward gas-liquid two-phase
flow across a tube bundle, Int. J. Multiphase Flow, 20 (1994)
249–272.
- G.P. Xu, C.P. Tso, K.W. Tou, Hydrodynamics of two-phase flow
in vertical up and down-flow across a horizontal tube bundle,
Int. J. Multiphase Flow, 24 (1998) 1317–1342.
- F.T. Kanizawa, G. Ribatski, Two-phase flow patterns across
triangular tube bundles for air-water upward flow, Int. J.
Multiphase Flow, 80 (2016) 43–56.
- K. Mao, T. Hibiki, Flow regime transition criteria for upward
two-phase cross-flow in horizontal tube bundles, Appl. Thermal
Eng., 112 (2017) 1533–1546.
- L. Gong, S. Shen, H. Liu, X. Chen, Three-dimensional heat
transfer coefficient distributions in a large horizontal-tube
falling film evaporator, Desalination, 357 (2015) 104–116.
- H. Hou, Q. Bi, H. Ma, G. Wu, Distribution characteristics of
falling film thickness around a horizontal tube, Desalination,
285 (2012) 393–398.
- H. Blasius, Das Aehnlichkeitsgesetz Bei Reibungsvorgangen
in Flüssigkeiten, V.d. Ingenieure, Mitteilungen Über
Forschungsarbeiten auf Dem Gebiete des Ingenieurwesens,
Vol. 131, Springer, Berlin, Heidelberg, 1913, pp. 1–41.
- H. Schlichting, Boundary Layer Theory, Mcgraw-Hill Book
Co., New York, NY, 1968.
- J.W. Palen, G. Breber, J. Taborek, Prediction of flow regimes in
horizontal tube-side condensation, Heat Transfer Eng., 1 (1979)
47–57.