References

  1. M. Auta, B.H. Hameed, Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye, Chem. Eng. J., 171 (2011) 502–509.
  2. D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from ficus carica bast, Arabian J. Chem., 10 (2017) S1445–S1451.
  3. H.D. Setiabudi, R. Jusoh, S.F.R.M. Suhaimi, S.F. Masrur, Adsorption of methylene blue ontooil palm (Elaeis guineensis) leaves: process optimization, isotherm, kinetics and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 63 (2016) 363–370.
  4. C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi, M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
  5. C.H.C. Tan, S. Sabar, M.H. Hussin, Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal, S. Afr. J. Chem. Eng., 26 (2018) 11–24.
  6. A. Nasrullah, B. Saad, A.H. Bhat, A.S. Khan, M. Danish, M.H. Isa, A. Naeem, Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: characterization and application for methylene blue removal, J. Cleaner Prod., 211 (2019) 1190–1200.
  7. M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.S. Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep., 3 (2018) 127–137.
  8. M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Surf. Interfaces, 11 (2018) 1–13.
  9. M.A. Islam, S. Sabar, A. Benhouria, W.A. Khanday, M. Asif, B.H. Hameed, Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption, J. Taiwan Inst. Chem. Eng., 74 (2017) 96–104.
  10. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  11. M. Rafatullah, T. Ahmad, A. Ghazali, O. Sulaiman, M. Danish, R. Hashim, Oil palm biomass as a precursor of activated carbons: a review, Crit. Rev. Environ. Sci. Technol., 43 (2013) 1117–1161.
  12. R. Diyanilla, T.S. Hamidon, L. Suryanegara, M.H. Hussin, Overview of pretreatment methods employed on oil palm biomass in producing value-added products: a review, Bioresources, 15 (2020), 9935–9997.
  13. J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J., 174 (2011) 33–40.
  14. J.M. Salman, B.H. Hameed, Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions, J. Hazard. Mater., 175 (2010) 133–137.
  15. M. Danish, T. Ahmad, R. Hashim, M.R. Hafiz, A. Ghazali, O. Sulaiman, S. Hiziroglu, Characterization and adsorption kinetic study of surfactant treated oil palm (Elaeis guineensis) empty fruit bunches, Desal. Water Treat., 57 (2016) 9474–9487.
  16. V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed, Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide, J. Anal. Appl. Pyrolysis, 110 (2014) 172–180.
  17. S. Tian, Z. Zhang, X. Zhang, K. Ostrikov, Capacitative deionization using commercial activated carbon fiber decorated with polyaniline, J. Colloid Interface Sci., 537 (2019) 247–255.
  18. N.M.A. Al-Lagtah, A.H. Al-Muhtaseb, M.N.M. Ahmad, Y. Salameh, Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons, Microporous Mesoporous Mater., 225 (2016) 504–514.
  19. L.W. Lai, A. Idris, Disruption of oil palm trunks and fronds by microwave-alkali pretreatment, Bioresources, 8 (2013) 2792–2804.
  20. S.R.A.M. Rasli, I. Ahmad, A.M. Lazim, A. Hamzah, Extraction and characterization of cellulose from agricultural residue-oil palm fronds, Malaysian J. Anal. Sci., 21 (2017) 1065–1073.
  21. N.A. Nordin, O. Sulaiman, R. Hashim, M.H.M. Kassim, Oil palm frond waste for the production of cellulose nanocrystals, J. Phys. Sci., 28 (2017) 115–126.
  22. M.H. Hussin, A.A. Rahim, M.N. Mohamad Ibrahim, N. Brosse, Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications, Ind. Crops Prod., 49 (2013) 23–32.
  23. C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
  24. A. Bazan, P. Nowicki, P. Półrolniczak, R. Pietrzak, Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops, J. Therm. Anal. Calorim., 125 (2016) 1199–1204.
  25. A. Mamaní, M.F. Sardella, M. Giménez, C. Deiana, Highly microporous carbons from olive tree pruning: optimization of chemical activation conditions, J. Environ. Chem. Eng., 7 (2019) 102830, doi: 10.1016/j.jece.2018.102830.
  26. A.A. Salema, M.T. Afzal, F. Motasemi, Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach, J. Anal. Appl. Pyrolysis,105 (2014) 217–226.
  27. A.F. Owolabi, A. Ghazali, H.A. Khalil, A. Hassan, R. Arjmandi, M.N. Fazita, M.M. Haafiz, Isolation and characterization of microcrystalline cellulose from oil palm fronds using chemomechanical process, Wood Fiber Sci., 48 (2016) 1–11.
  28. K. Sun, J. Chun Jiang, Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam, Biomass Bioenergy, 34 (2010) 539–544.
  29. IUPAC, Manual of symbols and terminology for physicochemical quantities and units, appendix II, part I, definitions, terminology symbols in colloid and surface chemistry, Pure Appl. Chem., 31 (1972) 583–586.
  30. S. Shakoor, A. Nasar, Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent, J. Taiwan Inst. Chem. Eng., 66 (2016) 154–163.
  31. A.E. Pirbazari, E. Saberikhah, M. Badrouh, M.S. Emami, Alkali treated foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution, Water Resour. Ind., 6 (2014) 64–80.
  32. O.S. Bello, Adsorptive removal of malachite green with activated carbon prepared from oil palm fruit fibre by KOH activation and CO2 gasification, S. Afr. J. Chem., 66 (2013) 32–41.
  33. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–462.
  34. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  35. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J., 20 (1974) 228–238.
  36. A.A. Oladipo, M. Gazi, S. Saber-Samandari, Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization, J. Taiwan Inst. Chem. Eng., 45 (2014) 653–664.
  37. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunchwaste, J. Hazard. Mater., 158 (2008) 65–72.
  38. B.H. Hameed, A.T. Mohd Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
  39. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes Pigm., 51 (2001) 25–40.
  40. T.A. Saleh, M.N. Siddiqui, A.A. Al-Arfaj, Kinetic and intraparticle diffusion studies of carbon nanotubes-titania for desulfurization of fuels, Pet. Sci. Technol., 34 (2016) 1468–1474.
  41. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  42. Q. Zhu, G.D. Moggridge, C. D’Agostino, Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: kinetics and diffusion analysis, Chem. Eng. J., 306 (2016) 1223–1233.
  43. V.J.P. Poots, G. McKay, J.J. Healy, The removal of acid dye from effluent using natural adsorbents-I peat, Water Res., 10 (1976) 1061–1066.
  44. M. Doğan, H. Abak, M. Alkan, Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters, J. Hazard. Mater., 164 (2009) 172–181.
  45. Z. Shahryari, A.S. Goharrizi, M. Azadi, Experimental study of methylene blue adsorption from aqueous solutions onto carbon nanotubes, Int. J. Water Resour. Environ. Eng., 2 (2010) 016–028.
  46. K.G. Bhattacharyya, A. Sharma, Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder, Dyes Pigm., 65 (2005) 51–59.
  47. W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresour. Technol., 98 (2007) 2897–2904.
  48. L. Liu, S. Fan, Y. Li, Removal behavior of methylene blue from aqueous solution by tea waste: kinetics, isotherms and mechanism, Int. J. Environ. Res. Public Health, 15 (2018) 1321, doi: 10.3390/ijerph15071321.