References
- M. Auta, B.H. Hameed, Preparation of waste tea activated
carbon using potassium acetate as an activating agent for
adsorption of acid blue 25 dye, Chem. Eng. J., 171 (2011)
502–509.
- D. Pathania, S. Sharma, P. Singh, Removal of methylene
blue by adsorption onto activated carbon developed from
ficus carica bast, Arabian J. Chem., 10 (2017) S1445–S1451.
- H.D. Setiabudi, R. Jusoh, S.F.R.M. Suhaimi, S.F. Masrur,
Adsorption of methylene blue ontooil palm (Elaeis guineensis)
leaves: process optimization, isotherm, kinetics and
thermodynamic studies, J. Taiwan Inst. Chem. Eng., 63 (2016)
363–370.
- C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam,
A. Modarressi, M. Rogalski, Adsorption of dyes on activated
carbon prepared from apricot stones and commercial
activated carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
- C.H.C. Tan, S. Sabar, M.H. Hussin, Development of immobilized
microcrystalline cellulose as an effective adsorbent for
methylene blue dye removal, S. Afr. J. Chem. Eng., 26 (2018)
11–24.
- A. Nasrullah, B. Saad, A.H. Bhat, A.S. Khan, M. Danish,
M.H. Isa, A. Naeem, Mangosteen peel waste as a sustainable
precursor for high surface area mesoporous activated carbon:
characterization and application for methylene blue removal,
J. Cleaner Prod., 211 (2019) 1190–1200.
- M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin,
S.S. Iqubal, Use of banana trunk waste as activated carbon in
scavenging methylene blue dye: kinetic, thermodynamic, and
isotherm studies, Bioresour. Technol. Rep., 3 (2018) 127–137.
- M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar,
J. Mohamad-Saleh, O. Sulaiman, Comparison of surface
properties of wood biomass activated carbons and their
application against rhodamine B and methylene blue dye,
Surf. Interfaces, 11 (2018) 1–13.
- M.A. Islam, S. Sabar, A. Benhouria, W.A. Khanday, M. Asif,
B.H. Hameed, Nanoporous activated carbon prepared from
karanj (Pongamia pinnata) fruit hulls for methylene blue
adsorption, J. Taiwan Inst. Chem. Eng., 74 (2017) 96–104.
- A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and
equilibrium study for the adsorption of textile dyes on coconut
shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
- M. Rafatullah, T. Ahmad, A. Ghazali, O. Sulaiman, M. Danish,
R. Hashim, Oil palm biomass as a precursor of activated
carbons: a review, Crit. Rev. Environ. Sci. Technol., 43 (2013)
1117–1161.
- R. Diyanilla, T.S. Hamidon, L. Suryanegara, M.H. Hussin,
Overview of pretreatment methods employed on oil palm
biomass in producing value-added products: a review,
Bioresources, 15 (2020), 9935–9997.
- J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed
adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm
frond activated carbon, Chem. Eng. J., 174 (2011) 33–40.
- J.M. Salman, B.H. Hameed, Effect of preparation conditions
of oil palm fronds activated carbon on adsorption of
bentazon from aqueous solutions, J. Hazard. Mater., 175 (2010)
133–137.
- M. Danish, T. Ahmad, R. Hashim, M.R. Hafiz, A. Ghazali,
O. Sulaiman, S. Hiziroglu, Characterization and adsorption
kinetic study of surfactant treated oil palm (Elaeis guineensis)
empty fruit bunches, Desal. Water Treat., 57 (2016) 9474–9487.
- V.O. Njoku, M.A. Islam, M. Asif, B.H. Hameed, Preparation
of mesoporous activated carbon from coconut frond for the
adsorption of carbofuran insecticide, J. Anal. Appl. Pyrolysis,
110 (2014) 172–180.
- S. Tian, Z. Zhang, X. Zhang, K. Ostrikov, Capacitative
deionization using commercial activated carbon fiber decorated
with polyaniline, J. Colloid Interface Sci., 537 (2019) 247–255.
- N.M.A. Al-Lagtah, A.H. Al-Muhtaseb, M.N.M. Ahmad,
Y. Salameh, Chemical and physical characteristics of optimal
synthesised activated carbons from grass-derived sulfonated
lignin versus commercial activated carbons, Microporous
Mesoporous Mater., 225 (2016) 504–514.
- L.W. Lai, A. Idris, Disruption of oil palm trunks and
fronds by microwave-alkali pretreatment, Bioresources,
8 (2013) 2792–2804.
- S.R.A.M. Rasli, I. Ahmad, A.M. Lazim, A. Hamzah, Extraction
and characterization of cellulose from agricultural residue-oil
palm fronds, Malaysian J. Anal. Sci., 21 (2017) 1065–1073.
- N.A. Nordin, O. Sulaiman, R. Hashim, M.H.M. Kassim, Oil
palm frond waste for the production of cellulose nanocrystals,
J. Phys. Sci., 28 (2017) 115–126.
- M.H. Hussin, A.A. Rahim, M.N. Mohamad Ibrahim, N. Brosse,
Physicochemical characterization of alkaline and ethanol
organosolv lignins from oil palm (Elaeis guineensis) fronds as
phenol substitutes for green material applications, Ind. Crops
Prod., 49 (2013) 23–32.
- C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and
preparation of activated carbon from acorn shell by chemical
activation with ZnCl2, J. Anal. Appl. Pyrolysis, 95 (2012) 21–24.
- A. Bazan, P. Nowicki, P. Półrolniczak, R. Pietrzak, Thermal
analysis of activated carbon obtained from residue after
supercritical extraction of hops, J. Therm. Anal. Calorim.,
125 (2016) 1199–1204.
- A. Mamaní, M.F. Sardella, M. Giménez, C. Deiana, Highly
microporous carbons from olive tree pruning: optimization of
chemical activation conditions, J. Environ. Chem. Eng., 7 (2019)
102830, doi: 10.1016/j.jece.2018.102830.
- A.A. Salema, M.T. Afzal, F. Motasemi, Is there synergy between
carbonaceous material and biomass during conventional
pyrolysis? A TG-FTIR approach, J. Anal. Appl. Pyrolysis,105 (2014)
217–226.
- A.F. Owolabi, A. Ghazali, H.A. Khalil, A. Hassan, R. Arjmandi,
M.N. Fazita, M.M. Haafiz, Isolation and characterization
of microcrystalline cellulose from oil palm fronds using
chemomechanical process, Wood Fiber Sci., 48 (2016) 1–11.
- K. Sun, J. Chun Jiang, Preparation and characterization of
activated carbon from rubber-seed shell by physical activation
with steam, Biomass Bioenergy, 34 (2010) 539–544.
- IUPAC, Manual of symbols and terminology for physicochemical
quantities and units, appendix II, part I, definitions,
terminology symbols in colloid and surface chemistry, Pure
Appl. Chem., 31 (1972) 583–586.
- S. Shakoor, A. Nasar, Removal of methylene blue dye from
artificially contaminated water using citrus limetta peel waste
as a very low cost adsorbent, J. Taiwan Inst. Chem. Eng.,
66 (2016) 154–163.
- A.E. Pirbazari, E. Saberikhah, M. Badrouh, M.S. Emami,
Alkali treated foumanat tea waste as an efficient adsorbent
for methylene blue adsorption from aqueous solution, Water
Resour. Ind., 6 (2014) 64–80.
- O.S. Bello, Adsorptive removal of malachite green with
activated carbon prepared from oil palm fruit fibre by KOH
activation and CO2 gasification, S. Afr. J. Chem., 66 (2013) 32–41.
- N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal,
Adsorption process of methyl orange dye onto mesoporous
carbon material–kinetic and thermodynamic studies, J. Colloid
Interface Sci., 362 (2011) 457–462.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models
for fixed-bed adsorbers, AIChE J., 20 (1974) 228–238.
- A.A. Oladipo, M. Gazi, S. Saber-Samandari, Adsorption of
anthraquinone dye onto eco-friendly semi-IPN biocomposite
hydrogel: equilibrium isotherms, kinetic studies and
optimization, J. Taiwan Inst. Chem. Eng., 45 (2014) 653–664.
- B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium
modeling and kinetic studies on the adsorption of basic dye
by a low-cost adsorbent: coconut (Cocos nucifera) bunchwaste,
J. Hazard. Mater., 158 (2008) 65–72.
- B.H. Hameed, A.T. Mohd Din, A.L. Ahmad, Adsorption of
methylene blue onto bamboo-based activated carbon: kinetics
and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
- N. Kannan, M.M. Sundaram, Kinetics and mechanism of
removal of methylene blue by adsorption on various carbons-a
comparative study, Dyes Pigm., 51 (2001) 25–40.
- T.A. Saleh, M.N. Siddiqui, A.A. Al-Arfaj, Kinetic and
intraparticle diffusion studies of carbon nanotubes-titania for
desulfurization of fuels, Pet. Sci. Technol., 34 (2016) 1468–1474.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- Q. Zhu, G.D. Moggridge, C. D’Agostino, Adsorption of pyridine
from aqueous solutions by polymeric adsorbents MN 200 and
MN 500. Part 2: kinetics and diffusion analysis, Chem. Eng. J.,
306 (2016) 1223–1233.
- V.J.P. Poots, G. McKay, J.J. Healy, The removal of acid dye from
effluent using natural adsorbents-I peat, Water Res., 10 (1976)
1061–1066.
- M. Doğan, H. Abak, M. Alkan, Adsorption of methylene
blue onto hazelnut shell: Kinetics, mechanism and activation
parameters, J. Hazard. Mater., 164 (2009) 172–181.
- Z. Shahryari, A.S. Goharrizi, M. Azadi, Experimental study
of methylene blue adsorption from aqueous solutions onto
carbon nanotubes, Int. J. Water Resour. Environ. Eng., 2 (2010)
016–028.
- K.G. Bhattacharyya, A. Sharma, Kinetics and thermodynamics
of methylene blue adsorption on neem (Azadirachta indica)
leaf powder, Dyes Pigm., 65 (2005) 51–59.
- W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion
processes during acid dye adsorption onto chitosan, Bioresour.
Technol., 98 (2007) 2897–2904.
- L. Liu, S. Fan, Y. Li, Removal behavior of methylene blue
from aqueous solution by tea waste: kinetics, isotherms and
mechanism, Int. J. Environ. Res. Public Health, 15 (2018) 1321,
doi: 10.3390/ijerph15071321.