References

  1. B. Hayati, A. Maleki, F. Najafi, H. Daraei, F. Gharibi, G. McKay, Adsorption of Pb2+, Ni2+, Cu2+, Co2+ metal ions from aqueous solution by PPI/SiO2 as new high performance adsorbent: preparation, characterization, isotherm, kinetic, thermodynamic studies, J. Mol. Liq., 237 (2017) 428–436.
  2. B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer–titania nanocomposite: synthesis and dye-removal capacity, Res. Chem. Int., 41 (2015) 3743–3757.
  3. N.M. Mahmoodi, B. Hayati, H. Bahrami, M. Arami, Dye adsorption and desorption properties of Mentha pulegium in single and binary systems, J. Appl. Polym. Sci., 122 (2011) 1489–1499.
  4. N.M. Mahmoodi, M. Oveisi, M. Bakhtiari, B. Hayati, A.A. Shekarchi, A. Bagheri, S. Rahimi, Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework-Graphene oxide nanocomposites and pollutant removal from water, J. Mol. Liq., 282 (2019) 115–130.
  5. D. En, L. Zheng, X. Yun, B. Bin, M. Yan, J. Juan, F. Li, S. An, Z. Wei, Applied surface science synthesis and photocatalytic property of multilayered Co3O4, Appl. Surf. Sci., 355 (2015) 547–552.
  6. A. Ajmal, I. Majeed, N. Malik, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Adv., 4 (2014) 37003–37026.
  7. A. Almasian, M.E. Olya, N.M. Mahmoodi, Synthesis of polyacrylonitrile/polyamidoamine composite nanofibers using electrospinning technique and their dye removal capacity, J. Taiwan Inst. Chem. Eng., 49 (2015) 119–128.
  8. N. Nasrollahi, V. Vatanpour, S. Aber, N.M. Mahmoodi, Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties, Sep. Purif. Technol., 192 (2018) 369–382.
  9. A. Asghar, A. Aziz, A. Raman, W. Mohd, A. Wan, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Cleaner Prod., 87 (2015) 826–838.
  10. N.M. Mahmoodi, Nickel ferrite nanoparticle: synthesis, modification by surfactant and dye removal ability, Water Air Soil Pollut., 224 (2013) 1419, doi: 10.1007/s11270–012–1419–7.
  11. N.M. Mahmoodi, J. Abdi, D. Bastani, Direct dyes removal using modified magnetic ferrite nanoparticle, J. Environ. Health Sci. Eng., 12 (2014) 1–10.
  12. N.M. Mahmoodi, Manganese ferrite nanoparticle: synthesis, characterization, and photocatalytic dye degradation ability, Desal. Water Treat., 53 (2015) 84–90.
  13. A.A. Ismail, D.W. Mazyck, Impact of heat treatment and composition of ZnO−TiO2 nanoparticles for photocatalytic oxidation of an azo dye, Ind. Eng. Chem. Res., 47 (2008) 1483–1487.
  14. N.M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, M. Vossoughi, Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling, Mater. Res. Bull., 100 (2018) 357–366.
  15. N.M. Mahmoodi, Dendrimer functionalized nanoarchitecture: synthesis and binary system dye removal, J. Taiwan Inst. Chem. Eng., 45 (2014) 2008–2020.
  16. A. Naseri, M. Samadi, N.M. Mahmoodi, A. Pourjavadi, H. Mehdipour, A.Z. Moshfegh, Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants, J. Phys. Chem. C, 121 (2017) 3327–3338.
  17. O. Tavakoli, V. Goodarzi, M.R. Saeb, N.M. Mahmoodi, R. Borja, Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger, J. Hazard. Mater., 334 (2017) 256–266.
  18. N.M. Mahmoodi, N.Y. Limaee, M. Arami, S. Borhany, M. Mohammad-Taheri, Nanophotocatalysis using nanoparticles of titania. Mineralization and finite element modelling of Solophenyl dye decolorization, J. Photochem. Photobiol., A, 189 (2007) 1–6.
  19. H. You, Z. Wu, Y. Jia, X. Xu, Y. Xia, Z. Han, Y. Wang, High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@photoelectric-TiO2 core-shell nanofibers for dye decomposition, Chemosphere, 183 (2017) 528–535.
  20. A.M. Al-Hamdi, U. Rinner, M. Sillanpää, Tin dioxide as a photocatalyst for water treatment: a review, Process Saf. Environ. Prot., 107 (2017) 190–205.
  21. B. Shi, G. Li, D. Wang, C. Feng, H. Tang, Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species, J. Hazard. Mater., 143 (2007) 567–574.
  22. X. Wang, J. Jia, Y. Wang, Degradation of C.I. Reactive Red 2 through photocatalysis coupled with water jet cavitation, J. Hazard. Mater., 185 (2011) 315–321.
  23. C. Gao, J. Wang, H. Xu, Y. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts, Chem. Soc. Rev., 46 (2017) 2799–2823.
  24. S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment: a review, Sep. Purif. Technol., 73 (2010) 71–91.
  25. A.O. Juma, E.A.A. Arbab, C.M. Muiva, L.M. Lepodise, G.T. Mola, Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite, J. Alloys Compd., 723 (2017) 866–872.
  26. F. Mustafa, S. Aslam, A. Jamil, M.A. Ahmad, Synthesis and characterization of wide band gap nickel oxide (NiO) powder via a facile route, Optik, 140 (2017) 38–44.
  27. M. Carbone, E. Maria Bauer, L. Micheli, M. Missori, NiO morphology dependent optical and electrochemical properties, Colloids Surf., A, 532 (2017) 178–182.
  28. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati- Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Adv., 4 (2014) 27654–27660.
  29. D. Zhang, F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci., 47 (2012) 2155–2161.
  30. T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Surfactant-aided sol–gel synthesis of mesoporous-assembled TiO2-NiO mixed oxide nanocrystals and their photocatalytic azo dye degradation activity, Chem. Eng. J., 192 (2012) 292–300.
  31. A. Hameed, T. Montini, P. Fornasiero, Photocatalytic decolourization of dyes on NiO–ZnO nano-composites, Photochem. Photobiol. Sci., 8 (2009) 677–682.
  32. H. Derikvandi, A. Nezamzadeh-Ejhieh, Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2, J. Colloid Interface Sci., 490 (2017) 314–327.
  33. A. Hameed, V. Gombac, T. Montini, M. Graziani, P. Fornasiero, Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites, Chem. Phys. Lett., 472 (2009) 212–216.
  34. M. Goudarzi, M. Bazarganipour, M. Salavati-Niasari, Synthesis, characterization and degradation of organic dye over Co3O4 nanoparticles prepared from new binuclear complex precursors, RSC Adv., 4 (2014) 46517–46520.
  35. C. Ravi Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. Suji Benjamin, A. Moses Ezhil Raj, K. Jeyadheepan, C. Sanjeeviraja, Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles, Ceram. Int., 41 (2015) 9301–9313.
  36. M. Roy, S. Ghosh, M.K. Naskar, Ligand-assisted soft-chemical synthesis of self-assembled different shaped mesoporous Co3O4: efficient visible light photocatalysts, Phys. Chem. Chem. Phys., 17 (2015) 10160–10169.
  37. S.K. Jesudoss, J. Judith Vijaya, P. Iyyappa Rajan, K. Kaviyarasu, M. Sivachidambaram, L. John Kennedy, H.A. Al-Lohedan, R. Jothiramalingam, M.A. Munusamy, High performance multifunctional green Co3O4 spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro-aromatics and antibacterial potential, Photochem. Photobiol. Sci., 16 (2017) 766–778.
  38. T.K. Jana, A. Pal, K. Chatterjee, Magnetic and photocatalytic study of Co3O4-ZnO nanocomposite, J. Alloys Compd., 653 (2015) 338–344.
  39. X.P. Qiu, J.S. Yu, H.M. Xu, W.X. Chen, W. Hu, G.L. Chen, Interfacial effects of the Cu2O nano-dots decorated Co3O4 nanorods array and its photocatalytic activity for cleaving organic molecules, Appl. Surf. Sci., 382 (2016) 249–259.
  40. X.P. Qiu, J.S. Yu, H.M. Xu, W.X. Chen, W. Hu, H.Y. Bai, G.L. Chen, Interfacial effect of the nanostructured Ag2S/Co3O4 and its catalytic mechanism for the dye photodegradation under visible light, Appl. Surf. Sci., 362 (2016) 498–505.
  41. J. Lv, D. Li, K. Dai, C. Liang, D. Jiang, L. Lu, G. Zhu, Multiwalled carbon nanotube supported CdS-DETA nanocomposite for efficient visible light photocatalysis, Mater. Chem. Phys., 186 (2017) 372–381.
  42. K.E. Tettey, M.Q. Yee, D. Lee, Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films, ACS Appl. Mater. Interfaces, 2 (2010) 2646–2652.
  43. G. Sohn, H. Choi, I. Jeon, D.W. Chang, L. Dai, J. Baek, Grafted multiwalled carbon nanotubes as oxygen reduction catalysts, ACS Nano, 6 (2012) 6345–6355.
  44. W. Oh, M. Chen, Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium(IV) n-butoxide, Composites, 29 (2008) 159–164.
  45. V.B. Koli, A.G. Dhodamani, S.D. Delekar, S.H. Pawar, In situ sol–gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications, J. Photochem. Photobiol., A, 333 (2017) 40–48.
  46. R. Long, Electronic structure of semiconducting and metallic tubes in TiO2/carbon nanotube heterojunctions: density functional theory calculations, J. Phys. Chem. Lett., 4 (2013) 1340–1346.
  47. S. Sadhu, P. Poddar, Template-free fabrication of highlyoriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity, J. Phys. Chem. C, 118 (2014) 19363–19373.
  48. R. Zhang, L. Fan, Y. Fang, S. Yang, Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO, J. Mater. Chem., 18 (2008) 4964–4970.
  49. T. Wen, Y. Bin Tang, F.Y. Chen, B.Y. Mo, Preparation, characterization of a ceria loaded carbon nanotubes nanocomposites photocatalyst and degradation of azo dye Acid Orange 7, Arch. Environ. Prot., 42 (2016) 12–19.
  50. H. Kusic, N. Koprivanac, A.L. Bozic, Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media, J. Photochem. Photobiol., A, 252 (2013) 131–144.
  51. Y. Zheng, Y. Yang, Y. Zhang, W. Zou, Y. Luo, L. Dong, B. Gao, Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation, Biochar, 1 (2019) 89–96.
  52. P. Martis, B.R. Venugopal, J. Delhalle, Z. Mekhalif, Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes, J. Solid State Chem., 184 (2011) 1245–1250.
  53. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications, J. Mater. Sci. - Mater. Electron., 28 (2017) 8908–8920.
  54. W. Wilson, A. Samuel, O.O. Sudheesh, K. Shukla, E. Selorm, A. Poomani, P. Govender, Palladium-doped – ZrO2 – multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment, Appl. Phys. A, 122 (2016) 579, doi: 10.1007/s00339-016-0086-8.
  55. B. Systems, Amino-functionalized carbon nanotubes for binding to polymers and biological systems, Chem. Mater., 17 (2005) 1290–1295.
  56. R. Yudianti, H. Onggo, Y. Saito, T. Iwata, J. Azuma, Analysis of functional group sited on multi-wall carbon nanotube surface, Open Mater. Sci. J., 5 (2011) 242–247.
  57. S.M. Yuen, C.C.M. Ma, Y.Y. Lin, H.C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite, Compos. Sci. Technol., 67 (2007) 2564–2573.
  58. K.A.M. Shanmugharaj, S.H. Ryu, Multiwalled carbon nanotubes-supported nickel catalysts for the steam reforming of propane, J. Mater. Sci., 47 (2012) 2985–2994.
  59. K. Saravanakumar, M.M. Ramjan, P. Suresh, V. Muthuraj, Fabrication of highly efficient visible light driven Ag/CeO2 photocatalyst for degradation of organic pollutants, J. Alloys Compd., 664 (2016) 149–160.
  60. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application, J. Mater. Sci. – Mater. Electron., 27 (2016) 7548–7553.
  61. V. Rajendar, T. Dayakar, B. Satish, K. Subramanyam, Y. Prashanthi, J.N. Technological, synthesis and characterization of Cuins2 nanoparticles as potential candidates for photocatalyst and photovoltaic materials, Chalcogenide Lett., 13 (2016) 467–475.
  62. A. Setyani, S. Wahyuni, S. Priatmoko, E.A.P. Wibowo, N. Amin, Synthesis and characterization of TNTs/polyaniline composite as photocatalyst degradation of Rhodamin B by Visible Light, KnE Life Sci., 3 (2017) 41–50, doi: 10.18502/kls.v3i5.977.
  63. H. Chen, W. Liu, Z. Qin, ZnO/ZnFe2O4 nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with nearinfrared activity, Catal. Sci. Technol., 7 (2017) 2236–2244.
  64. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method, J. Solid State Chem., 240 (2016) 43–48.
  65. H. Park, S. Liu, P.A. Salvador, G.S. Rohrer, High visible-light photochemical activity of titania decorated on single-wall carbon nanotube, RSC Adv., 6 (2016) 22285–22294.
  66. A. Hameed, V. Gombac, T. Montini, M. Graziani, P. Fornasiero, Synthesis, characterization and photocatalytic activity of NiO–Bi2O3 nanocomposites, Chem. Phys. Lett., 472 (2009) 212–216.
  67. E.M. Alrobayi, A.M. Algubili, A.M. Aljeboree, A.F. Alkaim, F.H. Hussein, Investigation of photocatalytic removal and photonic efficiency of maxilon blue dye GRL in the presence of TiO2 nanoparticles, Part. Sci. Technol., 35 (2017) 14–20.
  68. X.J. Wen, C.G. Niu, M. Ruan, L. Zhang, G.M. Zeng, AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visiblelight irradiation, J. Colloid Interface Sci., 497 (2017) 368–377.
  69. H. Wang, S. Li, L. Zhang, Z. Chen, J. Hu, R. Zou, K. Xu, G. Song, H. Zhao, J. Yang, J. Liu, Surface decoration of Bi2WO6 superstructures with Bi2O3 nanoparticles: an efficient method to improve visible-light-driven photocatalytic activity, CrystEngComm, 15 (2013) 9011–9019.
  70. D. Malwal, P. Gopinath, Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation, Catal. Sci. Technol., 6 (2016) 4458–4472.
  71. H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes, J. Hazard. Mater., 162 (2009) 674–681.
  72. V. Mirkhani, Photocatalytic degradation of Azo dyes catalyzed by Ag doped TiO2 photocatalyst, J. Iran. Chem. Soc., 6 (2009) 578–587.
  73. C.A.K. Gouvêa, F. Wypych, S.G. Moraes, N. Durán, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere, 40 (2000) 433–440.