References

  1. A. Omar, A. Nashed, Q. Li, G. Leslie, R.A. Taylor, Pathways for integrated concentrated solar power - desalination: a critical review, Renewable Sustainable Energy Rev., 119 (2020) 109609.
  2. M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  3. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  4. L. Ariyanfar, M. Yari, E.A. Aghdam, Proposal and performance assessment of novel combined ORC and HDD cogeneration systems, Appl. Therm. Eng., 108 (2016) 296–311.
  5. A.H. Araghi, M. Khiadani, K. Hooman, A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a, Energy, 98 (2016) 215–224.
  6. Q. Chen, R. Alrowais, M. Burhan, D. Ybyraiymkul, M.W. Shahzad, Y. Li, K.C. Ng, A self-sustainable solar desalination system using direct spray technology, Energy, 205 (2020).
  7. Q. Chen, Y. Li, K.J. Chua, On the thermodynamic analysis of a novel low-grade heat driven desalination system, Energy Convers. Manage., 128 (2016) 145–159.
  8. Q. Chen, M.K. Ja, Y. Li, K.J. Chua, Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system, Energy, 166 (2019) 871–885.
  9. M.A. Al-Weshahi, A. Anderson, G. Tian, Organic Rankine cycle recovering stage heat from MSF desalination distillate water, Appl. Energy, 130 (2014) 738–747.
  10. A. Baccioli, M. Antonelli, U. Desideri, A. Grossi, Thermodynamic and economic analysis of the integration of organic Rankine cycle and multi-effect distillation in waste-heat recovery applications, Energy, 161 (2018) 456–469.
  11. J.A. Aguilar-Jiménez, N. Velázquez, R. López-Zavala, R. Beltrán, L. Hernández-Callejo, L.A. González-Uribe, V. Alonso-Gómez, Low-temperature multiple-effect desalination/organic Rankine cycle system with a novel integration for fresh water and electrical energy production, Desalination, 477 (2020) 114269.
  12. F. Calise, M. Dentice d’Accadia, A. Macaluso, L. Vanoli, A. Piacentino, A novel solar-geothermal trigeneration system integrating water desalination: design, dynamic simulation and economic assessment, Energy, 115 (2016) 1533–1547.
  13. H. You, J. Han, Y. Liu, Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling, Energy, 185 (2019) 286–298.
  14. W.F. He, F. Wu, Y.P. Kong, T. Wen, J.J. Chen, D. Han, Parametric analysis of a power-water cogeneration system based on singleextraction organic Rankine cycle, Appl. Therm. Eng., 148 (2019) 382–390.
  15. H. Uehara, Y. Ikegami, Optimization of a Closed-Cycle OTEC System, J. Sol. Energy Eng. Trans.-ASME, 112 (1990) 247–256.
  16. M. Wang, R. Jing, H.R. Zhang, C. Meng, N. Li, Y.R. Zhao, An innovative organic Rankine cycle (ORC) based ocean thermal energy conversion (OTEC) system with performance simulation and multi-objective optimization, Appl. Therm. Eng., 145 (2018) 743–754.
  17. J.-I. Yoon, C.-H. Son, S.-M. Baek, B.H. Ye, H.-J. Kim, H.-S. Lee, Performance characteristics of a high-efficiency R717 OTEC power cycle, Appl. Therm. Eng., 72 (2014) 304–308.
  18. N. Yamada, A. Hoshi, Y. Ikegami, Performance simulation of solar-boosted ocean thermal energy conversion plant, Renewable Energy, 34 (2009) 1752–1758.
  19. H. Yuan, P.L. Zhou, N. Mei, Performance analysis of a solarassisted OTEC cycle for power generation and fishery cold storage refrigeration, Appl. Therm. Eng., 90 (2015) 809–819.
  20. H. Aydin, H.-S. Lee, H.-J. Kim, S.K. Shin, K. Park, Offdesign performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating, Renewable Energy, 72 (2014) 154–163.
  21. Y. Bian, J. Pan, Y. Liu, F. Zhang, Y. Yang, H. Arima, Performance analysis of a combined power and refrigeration cycle, Energy Convers. Manage., 185 (2019) 259–270.
  22. P. Ahmadi, I. Dincer, M.A. Rosen, Multi-objective optimization of a novel solar-based multigeneration energy system, Sol. Energy, 108 (2014) 576–591.
  23. S.M. Alirahmi, S. Rahmani Dabbagh, P. Ahmadi, S. Wongwises, Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy, Energy Convers. Manage., 205 (2020).
  24. H. Rostamzadeh, M. Ebadollahi, H. Ghaebi, A. Shokri, Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle, Energy Convers. Manage., 183 (2019) 210–229.
  25. S.H. Zhou, Y.L. Guo, X.S. Mu, S.Q. Shen, Effect of design parameters on thermodynamic losses of the heat transfer process in LT-MEE desalination plant, Desalination, 375 (2015) 40–47.
  26. S.H. Zhou, L.Y. Gong, X.Y. Liu, S.Q. Shen, Mathematical modeling and performance analysis for multi-effect evaporation/ multi-effect evaporation with thermal vapor compression desalination system, Appl. Therm. Eng., 159 (2019).
  27. H. Ghaebi, T. Parikhani, H. Rostamzadeh, B. Farhang, Proposal and assessment of a novel geothermal combined cooling and power cycle based on Kalina and ejector refrigeration cycles, Appl. Therm. Eng., 130 (2018) 767–781.
  28. C.R. Upshaw, Thermodynamic and Economic Feasibility Analysis of a 20MW Ocean Thermal Energy Conversion (OTEC) Power Plant, The University of Texas at Austin, 2012.
  29. C.X. Wu, B.J. Wu, Y. Ye, A review of ocean thermal energy utilization, Adv. New Renewable Energy, 2 (2014) 454–461.
  30. W. Shi, W.M. Liu, L. Liu, J.P. Peng, F.Y. Chen, Numerical analysis on the temperature rise characteristics of seawater in vertical cold-water pipe in OTEC power plant, J. Ocean Technol., 35 (2016) 93–96.
  31. H.R. Datsgerdi, H.T. Chua, Thermo-economic analysis of lowgrade heat driven multi-effect distillation based desalination processes, Desalination, 448 (2018) 36–48.
  32. B. Rahimi, A. Christ, K. Regenauer-Lieb, H.T. Chua, A novel process for low grade heat driven desalination, Desalination, 351 (2014) 202–212.
  33. Q. Chen, M.K. Ja, Y. Li, K.J. Chua, Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system, Energy, 151 (2018) 387–401.
  34. S. Zhang, The Economic Research of LT-MED and the Measures to Reduce the Cost of Product Water, North China Electric Power University, 2012.
  35. K.J. Gabriel, P. Linke, M.M. El-Halwagi, Optimization of multi-effect distillation process using a linear enthalpy model, Desalination, 365 (2015) 261–276.
  36. R.S. El-Emam, I. Dincer, Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle, Appl. Therm. Eng., 59 (2013) 435–444.
  37. H. Montazerinejad, P. Ahmadi, Z. Montazerinejad, Advanced exergy, exergo-economic and exrgo-environmental analyses of a solar based trigeneration energy system, Appl. Therm. Eng., 152 (2019) 666–685.
  38. M. Moghimi, M. Emadi, P. Ahmadi, H. Moghadasi, 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration, Appl. Therm. Eng., 141 (2018) 516–530.
  39. Y.R. Li, M.T. Du, C.M. Wu, S.Y. Wu, C. Liu, J.L. Xu, Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis, Energy, 68 (2014) 238–247.
  40. C. Mata-Torres, A. Zurita, J.M. Cardemil, R.A. Escobar, Exergy cost and thermoeconomic analysis of a Rankine cycle + multieffect distillation plant considering time-varying conditions, Energy Convers. Manage., 192 (2019) 114–132.
  41. Z.F. Wang, W. Han, N. Zhang, B.S. Su, M. Liu, H.G. Jin, Assessment of off-design performance of a combined cooling, heating and power system using exergoeconomic analysis, Energy Convers. Manage., 171 (2018) 188–195.
  42. S. Khalilzadeh, A. Hossein Nezhad, Utilization of waste heat of a high-capacity wind turbine in multi effect distillation desalination: energy, exergy and thermoeconomic analysis, Desalination, 439 (2018) 119–137.
  43. M. Esrafilian, R. Ahmadi, Energy, environmental and economic assessment of a polygeneration system of local desalination and CCHP, Desalination, 454 (2019) 20–37.
  44. F. Calise, M. Dentice d’Accadia, A. Piacentino, Exergetic and exergoeconomic analysis of a renewable polygeneration system and viability study for small isolated communities, Energy, 92 (2015) 290–307.
  45. P. Ahmadi, I. Dincer, M.A. Rosen, Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production, Int. J. Hydrogen Energy, 40 (2015) 7601–7608.
  46. M.A. Darwish, F. Al-Juwayhel, H.K. Abdulraheim, Multieffect boiling systems from an energy viewpoint, Desalination, 194 (2006) 22–39.
  47. Y. Dai, J. Wang, L. Gao, Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle, Appl. Therm. Eng., 29 (2009) 1983–1990.
  48. S. Bigham, R. KouhiKamali, M.P. Zadeh, A general guide to design of falling film evaporators utilized in multi effect desalination units operating at high vapor qualities under a sub-atmospheric condition, Energy, 84 (2015) 279–288.
  49. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6 (2002) 182–197.
  50. Y. Feng, T. Hung, Y. Zhang, B. Li, J. Yang, Y. Shi, Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings, Energy, 93 (2015) 2018–2029.