References

  1. UNEP, Vital Water Graphics: An Overview of the State of the World’s Fresh and Marine Waters, UNEP, 2008.
  2. J. Lienhard, T. Gregory, W. David, B. Leonardo, Low Carbon Desalination: Status and Research, Development, and Demonstration Needs, Cambridge, Massachusetts, n.d.
  3. C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review, Renewable Sustainable Energy Rev., 19 (2013) 136–163.
  4. M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, Membrane technology enhancement in oil-water separation. A review, Desalination, 357 (2015) 197–207.
  5. H. Zhang, Z. Zhong, W. Xing, Application of ceramic membranes in the treatment of oilfield-produced water: effects of polyacrylamide and inorganic salts, Desalination, 309 (2013) 84–90.
  6. M. Ebrahimi, K. Shams Ashaghi, L. Engel, D. Willershausen, P. Mund, P. Bolduan, Characterization and application of different ceramic membranes for the oil-field produced water treatment, Desalination, 245 (2009) 533–540.
  7. S.E. Weschenfelder, A.C.C. Mello, C.P. Borges, J.C. Campos, Oilfield produced water treatment by ceramic membranes: preliminary process cost estimation, Desalination, 360 (2015) 81–86.
  8. A. Mohsen, M. Mirfendereski, M. Nikbakht, M. Golshenas, T. Mohammadi, Performance study of mullite and mullitealumina ceramic MF membranes for oily wastewaters treatment, Desalination, 259 (2010) 169–178.
  9. T. Muhammad, A.A. Mojjly, A. Al-Othman, N. Hilal, Membrane separation as a pre-treatment process for oily saline water, Desalination, 447 (2018) 182–202.
  10. A. Khalifa, H. Ahmad, M. Antar, T. Laoui, M. Khayet, Experimental and theoretical investigations on water desalination using direct contact membrane distillation, Desalination, 404 (2017) 22–34.
  11. A. de la Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and simulation of a solar-assisted multi-effect distillation plant, Desalination, 357 (2015) 65–76.
  12. A. de la Calle, J. Bonilla, L. Roca, P. Palenzuela, Dynamic modeling and performance of the first cell of a multi-effect distillation plant, Appl. Therm. Eng., 70 (2014) 410–420.
  13. S. Azimibavil, A.J. Dehkordi, Dynamic simulation of a multieffect distillation (MEE) process, Desalination, 392 (2016) 91–101.
  14. M. Alsehli, M. Alzahrani, J.K. Choi, A novel design for solar integrated multi-effect distillation driven by sensible heat and alternate storage tanks, Desalination, 468 (2019) 114067.
  15. I.B. Askari, M. Ameri, Techno economic feasibility analysis of Linear Fresnel solar field as thermal source of the MED/TVC desalination system, Desalination, 394 (2016) 1–17.
  16. I.B. Askari, M. Ameri, The application of linear Fresnel and parabolic trough solar fields as thermal source to produce electricity and fresh water, Desalination, 415 (2017) 90–103.
  17. I.B. Askari, M. Ameri, F. Calise, Energy, exergy and exergoeconomic analysis of different water desalination technologies powered by Linear Fresnel solar field, Desalination, 425 (2018) 37–67.
  18. C. Ghenai, D. Kabakebji, I. Douba, A. Yassin, Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water, Energy, 215 (2021) 119212.
  19. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Transient and thermo-economic analysis of MEE-MVC desalination process, Energy, 167 (2019) 283–296.
  20. A. Farsi, I. Dincer, Development and evaluation of an integrated MED/membrane desalination system, Desalination, 463 (2019) 55–68.
  21. E. Ali, J. Orfi, H. AlAnsary, J.G. Lee, A. Alpatova, N. Ghaffour, Integration of multi effect evaporation and membrane distillation desalination processes for enhanced performance and recovery ratios, Desalination, 493 (2020) 114619.
  22. P. Guo, T. Li, P. Li, Y. Zhai, J. Li, Study on a novel sprayevaporation multi-effect distillation desalination system, Desalination, 473 (2020) 114195.
  23. G. Kosmadakis, M. Papapetrou, B. Ortega-Delgado, A. Cipollina, D.C. Alarcón-Padilla, Correlations for estimating the specific capital cost of multi-effect distillation plants considering the main design trends and operating conditions, Desalination, 447 (2018) 74–83.
  24. M. Papapetrou, G. Micale, G. Zaragoza, G. Kosmadakis, Assessment of methodologies and data used to calculate desalination costs, Desalination, 419 (2017) 8–19.
  25. B. Ortega-Delgado, P. Palenzuela, D.C. Alarón-Padilla, Parametric study of a multi-effect distillation plant with thermal vapor compression for its integration into a Rankine cycle power block, Desalination, 394 (2016) 18–29.
  26. I.S. Al-Mutaz, I. Wazeer, Development of a steady-state mathematical model for MEE-TVC desalination plants, Desalination, 351 (2014) 9–18.
  27. J.R. Thome, Engineering Data Book III, Wolverine Tube Inc, 2004.
  28. K.R. Chun, R.A. Seban, Performance prediction of falling-film evaporators, J. Heat Transfer, 94 (1972) 432–436.
  29. O. Miyatake, K. Murakami, Y. Kawata, Heat Transfer, Jpn. Res., 2 (1973) 89–100.
  30. R. Bellman, R.H. Pennington, Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math.,12 (1954) 151–162.
  31. J.H. Lienhard, P.T.Y. Wong, The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder, J. Heat Transfer, 86 (1964) 220–225.
  32. D. Maron-Moalem, S. Sideman, A.E. Dukler, Dripping characteristics in a horizontal tube film evaporator, Desalination, 27 (1978) 117–127.
  33. E.N. Ganic, M.N. Roppo, An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer, J. Heat Transfer, 102 (1980) 342–346.
  34. L. Yang, S. Shen, Experimental study of falling film evaporation heat transfer outside horizontal tubes, Desalination, 220 (2008) 654–660.