References

  1. G. Libralato, A. Volpi Ghirardini, F. Avezzù, To centralise or to decentralise: an overview of the most recent trends in wastewater treatment management, J. Environ. Manage., 94 (2012) 61–68.
  2. M. Kaneko, T. Nambu, M. Tokoro, Behaviour of pathogenic E. coli and Salmonella enteritidis in small domestic sewage treatment apparatus (“Johkasou”), Water Sci. Technol., 43 (2001) 191–193.
  3. D. Todt, A. Heistad, P.D. Jenssen, Load and distribution of organic matter and nutrients in a separated household wastewater stream, Environ. Technol., 36 (2015) 1584–1593.
  4. H.I. Abdel-Shafy, M.A. El-Khateeb, M. Shehata, Blackwater treatment via combination of sedimentation tank and hybrid wetlands for unrestricted reuse in Egypt, Desal. Water Treat., 71 (2017) 145–151.
  5. M.K. Sharma, V.K. Tyagi, G. Saini, A.A. Kazmi, On-site treatment of source separated domestic wastewater employing anaerobic package system, J. Environ. Chem. Eng., 4 (2016) 1209–1216.
  6. G. Li, L.-l. Wu, C.-s. Dong, G.-x. Wu, Y.-b. Fan, Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor, J. Environ. Sci., 19 (2007) 12–17.
  7. M.J. Gao, L. Zhang, A.P. Florentino, Y. Liu, Performance of anaerobic treatment of blackwater collected from different toilet flushing systems: can we achieve both energy recovery and water conservation?, J. Hazard. Mater., 365 (2019) 44–52.
  8. Y. Magara, K. Nishimura, M. Itoh, M. Tanaka, Biological denitrification system with membrane separation for collective human excreta treatment plant, Water Sci. Technol., 25 (1992) 241–251.
  9. M.S.M. Jetten, S.J. Horn, M.C.M. van Loosdrecht, Towards a more sustainable municipal wastewater treatment system, Water Sci. Technol., 35 (1997) 171–180.
  10. M.S. de Graaff, G. Zeeman, H. Temmink, M.C.M. van Loosdrecht, C.J.N. Buisman, Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide, Water Res., 44 (2010) 2171–2178.
  11. J.Y. Li, K.N. Xu, T.S. Liu, G. Bai, Y.C. Liu, C.W. Wang, M. Zheng, Achieving stable partial nitritation in an acidic nitrifying bioreactor, Environ. Sci. Technol., 54 (2020) 456–463.
  12. D.C. Zhang, H. Su, P. Antwi, L.W. Xiao, Z.W. Liu, J.Z. Li, High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: efficiency, kinetics, and microbial community dynamics, Sci. Total Environ., 692 (2019) 741–755.
  13. J.H. Ahn, R. Yu, K. Chandran, Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor, Biotechnol. Bioeng., 100 (2008) 1078–1087.
  14. H.X. Jiang, Y.X. Wen, Q. Wang, Y. He, X.H. Dai, H.B. Chen, Partial nitritation with aerobic duration control of carboncaptured blackwater: process operation and model-based evaluation, Chem. Eng. J., 401 (2020) 126060, https://doi. org/10.1016/j.cej.2020.126060.
  15. G. Sin, D. Kaelin, M.J. Kampschreur, I. Takács, B. Wett, K.V. Gernaey, L. Rieger, H. Siegrist, M.C.M. van Loosdrecht, Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts, Water Sci. Technol., 58 (2008) 1155–1171.
  16. J. Gabarró, R. Ganigué, F. Gich, M. Ruscalleda, M.D. Balaguer, J. Colprim, Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration, Bioresour. Technol., 126 (2012) 283–289.
  17. R.L. Siegrist, Contemporary Water Use and Wastewater Generation, In: Decentralized Water Reclamation Engineering: A Curriculum Workbook, Springer International Publishing, Cham, 2017, pp. 81–140.
  18. APHA, WEF, Standards Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Water Environment Federation, Washington, D.C., USA, 2005.
  19. A.C. Anthonisen, R.C. Loehr, T.B.S. Prakasam, E.G. Srinath, Inhibition of nitrification by ammonia and nitrous acid, J. Water Pollut. Control Fed., 48 (1976) 835–852.
  20. Z.B. Wang, S.J. Zhang, L. Zhang, B. Wang, W.L. Liu, S.Q. Ma, Y.Z. Peng, Restoration of real sewage partial nitritationanammox process from nitrate accumulation using free nitrous acid treatment, Bioresour. Technol., 251 (2018) 341–349.
  21. J. Gu, Q. Yang, Y. Liu, Mainstream anammox in a novel A-2B process for energy-efficient municipal wastewater treatment with minimized sludge production, Water Res., 138 (2018) 1–6.
  22. K. Milferstedt, J. Hamelin, C. Park, J.Y. Jung, Y.H. Hwang, S.-K. Cho, K.-W. Jung, D.-H. Kim, Biogranules applied in environmental engineering, Int. J. Hydrogen Energy, 42 (2017) 27801–27811.
  23. Q.L. Wang, L. Ye, G.M. Jiang, Z.G. Yuan, A free nitrous acid (FNA)-based technology for reducing sludge production, Water Res., 47 (2013) 3663–3672.
  24. J.-S. Guo, F. Fang, P. Yan, Y.-P. Chen, Sludge reduction based on microbial metabolism for sustainable wastewater treatment, Bioresour. Technol., 297 (2020) 122506, doi: 10.1016/j. biortech.2019.122506.
  25. F.Z. Zhang, X.Y. Li, Z. Wang, H. Jiang, S. Ren, Y.Z. Peng, Simultaneous ammonium oxidation denitrifying (SAD) in an innovative three-stage process for energy-efficient mature landfill leachate treatment with external sludge reduction, Water Res., 169 (2020) 115156, https://doi.org/10.1016/j. watres.2019.115156.
  26. Z. Wang, L. Zhang, F.Z. Zhang, H. Jiang, S. Ren, W. Wang, Y.Z. Peng, A continuous-flow combined process based on partial nitrification-Anammox and partial denitrification- Anammox (PN/A + PD/A) for enhanced nitrogen removal from mature landfill leachate, Bioresour. Technol., 297 (2020) 122483, https://doi.org/10.1016/j.biortech.2019.122483.