References
- G. Libralato, A. Volpi Ghirardini, F. Avezzù, To centralise
or to decentralise: an overview of the most recent trends in
wastewater treatment management, J. Environ. Manage.,
94 (2012) 61–68.
- M. Kaneko, T. Nambu, M. Tokoro, Behaviour of pathogenic
E. coli and Salmonella enteritidis in small domestic sewage
treatment apparatus (“Johkasou”), Water Sci. Technol.,
43 (2001) 191–193.
- D. Todt, A. Heistad, P.D. Jenssen, Load and distribution
of organic matter and nutrients in a separated household
wastewater stream, Environ. Technol., 36 (2015) 1584–1593.
- H.I. Abdel-Shafy, M.A. El-Khateeb, M. Shehata, Blackwater
treatment via combination of sedimentation tank and hybrid
wetlands for unrestricted reuse in Egypt, Desal. Water Treat.,
71 (2017) 145–151.
- M.K. Sharma, V.K. Tyagi, G. Saini, A.A. Kazmi, On-site treatment
of source separated domestic wastewater employing anaerobic
package system, J. Environ. Chem. Eng., 4 (2016) 1209–1216.
- G. Li, L.-l. Wu, C.-s. Dong, G.-x. Wu, Y.-b. Fan, Inorganic
nitrogen removal of toilet wastewater with an airlift external
circulation membrane bioreactor, J. Environ. Sci., 19 (2007)
12–17.
- M.J. Gao, L. Zhang, A.P. Florentino, Y. Liu, Performance of
anaerobic treatment of blackwater collected from different
toilet flushing systems: can we achieve both energy recovery
and water conservation?, J. Hazard. Mater., 365 (2019) 44–52.
- Y. Magara, K. Nishimura, M. Itoh, M. Tanaka, Biological
denitrification system with membrane separation for collective
human excreta treatment plant, Water Sci. Technol., 25 (1992)
241–251.
- M.S.M. Jetten, S.J. Horn, M.C.M. van Loosdrecht, Towards a
more sustainable municipal wastewater treatment system,
Water Sci. Technol., 35 (1997) 171–180.
- M.S. de Graaff, G. Zeeman, H. Temmink, M.C.M. van
Loosdrecht, C.J.N. Buisman, Long term partial nitritation of
anaerobically treated black water and the emission of nitrous
oxide, Water Res., 44 (2010) 2171–2178.
- J.Y. Li, K.N. Xu, T.S. Liu, G. Bai, Y.C. Liu, C.W. Wang, M. Zheng,
Achieving stable partial nitritation in an acidic nitrifying
bioreactor, Environ. Sci. Technol., 54 (2020) 456–463.
- D.C. Zhang, H. Su, P. Antwi, L.W. Xiao, Z.W. Liu, J.Z. Li,
High-rate partial-nitritation and efficient nitrifying bacteria
enrichment/out-selection via pH-DO controls: efficiency,
kinetics, and microbial community dynamics, Sci. Total
Environ., 692 (2019) 741–755.
- J.H. Ahn, R. Yu, K. Chandran, Distinctive microbial ecology and
biokinetics of autotrophic ammonia and nitrite oxidation in a
partial nitrification bioreactor, Biotechnol. Bioeng., 100 (2008)
1078–1087.
- H.X. Jiang, Y.X. Wen, Q. Wang, Y. He, X.H. Dai, H.B. Chen,
Partial nitritation with aerobic duration control of carboncaptured
blackwater: process operation and model-based
evaluation, Chem. Eng. J., 401 (2020) 126060, https://doi.
org/10.1016/j.cej.2020.126060.
- G. Sin, D. Kaelin, M.J. Kampschreur, I. Takács, B. Wett,
K.V. Gernaey, L. Rieger, H. Siegrist, M.C.M. van Loosdrecht,
Modelling nitrite in wastewater treatment systems: a discussion
of different modelling concepts, Water Sci. Technol., 58 (2008)
1155–1171.
- J. Gabarró, R. Ganigué, F. Gich, M. Ruscalleda, M.D. Balaguer,
J. Colprim, Effect of temperature on AOB activity of a partial
nitritation SBR treating landfill leachate with extremely high
nitrogen concentration, Bioresour. Technol., 126 (2012) 283–289.
- R.L. Siegrist, Contemporary Water Use and Wastewater
Generation, In: Decentralized Water Reclamation Engineering:
A Curriculum Workbook, Springer International Publishing,
Cham, 2017, pp. 81–140.
- APHA, WEF, Standards Methods for the Examination of Water
and Wastewater, 21st ed., American Public Health Association,
Water Environment Federation, Washington, D.C., USA, 2005.
- A.C. Anthonisen, R.C. Loehr, T.B.S. Prakasam, E.G. Srinath,
Inhibition of nitrification by ammonia and nitrous acid, J. Water
Pollut. Control Fed., 48 (1976) 835–852.
- Z.B. Wang, S.J. Zhang, L. Zhang, B. Wang, W.L. Liu, S.Q. Ma,
Y.Z. Peng, Restoration of real sewage partial nitritationanammox
process from nitrate accumulation using free
nitrous acid treatment, Bioresour. Technol., 251 (2018) 341–349.
- J. Gu, Q. Yang, Y. Liu, Mainstream anammox in a novel A-2B
process for energy-efficient municipal wastewater treatment
with minimized sludge production, Water Res., 138 (2018) 1–6.
- K. Milferstedt, J. Hamelin, C. Park, J.Y. Jung, Y.H. Hwang,
S.-K. Cho, K.-W. Jung, D.-H. Kim, Biogranules applied in
environmental engineering, Int. J. Hydrogen Energy, 42 (2017)
27801–27811.
- Q.L. Wang, L. Ye, G.M. Jiang, Z.G. Yuan, A free nitrous acid
(FNA)-based technology for reducing sludge production,
Water Res., 47 (2013) 3663–3672.
- J.-S. Guo, F. Fang, P. Yan, Y.-P. Chen, Sludge reduction
based on microbial metabolism for sustainable wastewater
treatment, Bioresour. Technol., 297 (2020) 122506, doi: 10.1016/j.
biortech.2019.122506.
- F.Z. Zhang, X.Y. Li, Z. Wang, H. Jiang, S. Ren, Y.Z. Peng,
Simultaneous ammonium oxidation denitrifying (SAD) in
an innovative three-stage process for energy-efficient mature
landfill leachate treatment with external sludge reduction,
Water Res., 169 (2020) 115156, https://doi.org/10.1016/j.
watres.2019.115156.
- Z. Wang, L. Zhang, F.Z. Zhang, H. Jiang, S. Ren, W. Wang,
Y.Z. Peng, A continuous-flow combined process based on
partial nitrification-Anammox and partial denitrification-
Anammox (PN/A + PD/A) for enhanced nitrogen removal from
mature landfill leachate, Bioresour. Technol., 297 (2020) 122483,
https://doi.org/10.1016/j.biortech.2019.122483.