References

  1. M. Iqbal, M. Abbas, A. Nazir, A.Z. Qamar, Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review, Chem.Int., 1 (2019) 80.
  2. M. Iqbal, Vicia faba bioassay for environmental toxicity monitoring: a review, Chemosphere, 144 (2016) 785–802.
  3. M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen, A. Ghaffar, G.A. Shar, M. Asif Tahir, M. Iqbal, Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review, Sci. Total Environ., 626 (2018) 1295–1309.
  4. M. Iqbal, A. Ghaffar, A. Nazir, M. Yameen, B. Munir, N. Nisar, T.H. Bokhari, Coal desulfurization using gamma and ultraviolet radiation, Energy Sources Part A, 39 (2017) 1109–1115.
  5. N. Amjed, M. Iqbal, I.A. Bhatti, A. Nazir, Coal desulphurization and conditions optimization through response surface methodology, Khushab mines, Pakistan, Energy Sources Part A, 39 (2017) 1235–1241.
  6. N. Amjed, I.A. Bhatti, A. Nazir, M. Iqbal, Microwave-assisted desulfurization of coal by photo-catalytic oxidation treatment, Energy Sources Part A, 39 (2017) 1043–1049.
  7. A. Lancia, D. Musmarra, M. Prisciandaro, M. Tammaro, Catalytic oxidation of calcium bisulfite in the wet limestone–gypsum flue gas desulfurization process, Chem. Eng. Sci., 54 (1999) 3019–3026.
  8. L. Cui, G.P. Li, Y.Z. Li, B. Yang, L.Q. Zhang, Y. Dong, C.Y. Ma, Electrolysis-electrodialysis process for removing chloride ion in wet flue gas desulfurization wastewater (DW): influencing factors and energy consumption analysis, Chem. Eng. Res. Des., 123 (2017) 240–247.
  9. J. Qian, R.L. Liu, L. Wei, H. Lu, G.-H. Chen, System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage, Water Res., 80 (2015) 189–199.
  10. N. Amjed, I.A. Bhatti, K. Arif, M. Iqbal, A. Nazir, M. Zahid, Variations in the physicochemical profile of Khushab coal under various environmental conditions, Polish J. Environ. Stud., 27 (2018) 987–992.
  11. L.B. Zheng, Y.Y. Jiao, H. Zhong, C. Zhang, J. Wang, Y.S. Wei, Insight into the magnetic lime coagulation-membrane distillation process for desulfurization wastewater treatment: from pollutant removal feature to membrane fouling, J. Hazard. Mater., 391 (2020) 122202, https://doi.org/10.1016/j. jhazmat.2020.122202.
  12. Z.X. Liang, L. Zhang, Z.Q. Yang, T. Qiang, G. Pu, J.Y. Ran, Evaporation and crystallization of a droplet of desulfurization wastewater from a coal-fired power plant, Appl. Therm. Eng., 119 (2017) 52–62.
  13. S.C. Ma, J. Chai, K. Wu, Y.J. Xiang, Z.C. Wan, J.R. Zhang, Experimental and model research on chloride ion gas–solid distribution in the process of desulfurization wastewater evaporation, RSC Adv., 8 (2018) 26283–26292.
  14. C. Conidi, F. Macedonio, A. Ali, A. Cassano, A. Criscuoli, P. Argurio, E. Drioli, Treatment of flue gas desulfurization wastewater by an integrated membrane-based process for approaching zero liquid discharge, Membranes, 8 (2018) 117–129.
  15. J. Renew, J. Wos, B. Pakzadeh, Management of flue gas desulfurization wastewater residuals from zero liquid discharge systems from the coal-fired power industry, Proc. Water Environ. Fed., 19 (2014) 7335–7339.
  16. S.G.J. Heijman, H. Guo, S. Li, J.C. van Dijk, L.P. Wessels, Zero liquid discharge: heading for 99% recovery in nanofiltration and reverse osmosis, Desalination, 236 (2009) 357–362.
  17. Y.F. Qi, C. Guo, X. Xu, B.Y. Gao, Q.Y. Yue, B. Jiang, Z. Qian, C.Z. Wang, Y.Q. Zhang, Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: preparation, characterization and kinetic model, Sci. Total Environ., 715 (2020) 136982, https://doi.org/10.1016/j. scitotenv.2020.136982.
  18. N. Yin, F. Liu, Z.X. Zhong, W.H. Xing, Integrated membrane process for the treatment of desulfurization wastewater, Ind. Eng. Chem. Res., 49 (2010) 3337–3341.
  19. F. Jia, J.L. Wang, Treatment of flue gas desulfurization wastewater with near-zero liquid discharge by nanofiltrationmembrane distillation process, Sep. Sci. Technol., 53 (2018) 146–153.
  20. Y. Zhuang, F. Yu, J. Ma, J.H. Chen, Adsorption of ciprofloxacin onto graphene-soy protein biocomposites, New J. Chem., 39 (2015) 3333–3336.
  21. Y.-n. Wang, Y.F. Tsang, H.W. Wang, Y.J. Sun, Y. Song, X.L. Pan, S.Y. Luo, Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials, Environ. Pollut., 258 (2020) 113481, https://doi.org/10.1016/j. envpol.2019.113481.
  22. H.N. Bhatti, Z. Mahmood, A. Kausar, S.M. Yakout, O.H. Shair, M. Iqbal, Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: adsorption-desorption, kinetics and thermodynamic studies for the removal of 2,4-dichlorophenol, Int. J. Biol. Macromol., 153 (2020) 146–157.
  23. F. Ishtiaq, H.N. Bhatti, A. Khan, M. Iqbal, A. Kausar, Polypyrole, polyaniline and sodium alginate biocomposites and adsorptiondesorption efficiency for imidacloprid insecticide, Int. J. Biol. Macromol., 147 (2020) 217–232.
  24. R. Ajdary, B.L. Tardy, B.D. Mattos, L. Bai, O.J. Rojas, Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels, Adv. Mater., (2020) 2001085 (In Press), https://doi.org/10.1002/adma.202001085.
  25. S.X. Dong, Y.L. Wang, Y.W. Zhao, X.H. Zhou, H.L. Zheng, La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: effect of lanthanum species and mechanistic study, Water Res, 126 (2017) 433–441.
  26. S.X. Dong, Q.H. Ji, Y.L. Wang, H.W. Liu, J.H. Qu, Enhanced phosphate removal using zirconium hydroxide encapsulated in quaternized cellulose, J. Environ. Sci., 89 (2020) 102–112.
  27. B.H. Guan, W.M. Ni, Z.B. Wu, Y. Lai, Removal of Mn(II) and Zn(II) ions from flue gas desulfurization wastewater with water-soluble chitosan, Sep. Purif. Technol., 65 (2009) 269–274.
  28. Y.H. Li, F.Q. Liu, B. Xia, Q.J. Du, P. Zhang, D.C. Wang, Z.H. Wang, Y.Z. Xia, Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites, J. Hazard. Mater., 177 (2010) 876–880.
  29. P. Sikorski, F. Mo, G. Skjak-Braek, B.T. Stokke, Evidence for egg-box-compatible interactions in calcium−alginate gels from fiber X-ray diffraction, Biomacromolecules, 8 (2007) 2098–2103.
  30. Y. Zhuang, Y. Kong, K. Han, H.T. Hao, B.Y. Shi, A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial, New J. Chem., 41 (2017) 15127–15135.
  31. F. Yu, T.R. Cui, C.F. Yang, X.H. Dai, J. Ma, κ-Carrageenan/ sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity, Chemosphere, 237 (2019) 124417, https://doi.org/10.1016/j. chemosphere.2019.124417.
  32. Y. Zhuang, F. Yu, H. Chen, J. Zheng, J. Ma, J.H. Chen, Alginate/ graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity, J. Mater. Chem. A, 4 (2016) 10885–10892.
  33. Y. Zhuang, F. Yu, J. Ma, J.H. Chen, Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel, J. Colloid Interface Sci., 507 (2017) 250–259.
  34. Q. Manzoor, A. Sajid, T. Hussain, M. Iqbal, M. Abbas, J. Nisar, Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater, J. Mater. Res. Technol., 8 (2019) 75–86.
  35. H.N. Bhatti, Y. Safa, S.M. Yakout, O.H. Shair, M. Iqbal, A. Nazir, Efficient removal of dyes using carboxymethyl cellulose/ alginate/polyvinyl alcohol/rice husk composite: adsorption/ desorption, kinetics and recycling studies, Int. J. Biol. Macromol., 150 (2020) 861–870.
  36. T. Gotoh, K. Matsushima, K.-I. Kikuchi, Adsorption of Cu and Mn on covalently cross-linked alginate gel beads, Chemosphere, 55 (2003) 57–64.
  37. B.J. Balakrishnan, A. Jayakrishnan, Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds, Biomaterials, 26 (2005) 3941–3951.
  38. V. Misra, A review on the use of biopolymers for the removal of toxic metals from liquid industrial effluents, Int. J. Environ. Waste Manage., 3 (2009) 393–410.
  39. C.K. Kuo, P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. structure, gelation rate and mechanical properties, Biomaterials, 22 (2001) 511–521.
  40. K.Y. Lee, J.A. Rowley, P. Eiselt, E.M. Moy, K.H. Bouhadir, D.J. Mooney, Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density, Macromolecules, 33 (2000) 4291–4294.