References

  1. D.S. Wang, J.J. Shen, S.H. Zhu, G.P. Jiang, Model predictive control for chlorine dosing of drinking water treatment based on support vector machine model, Desal. Water Treat., 173 (2020) 133–141.
  2. N. Liang, Z.H. Zou, Y.G. Wei, Regression models (SVR, EMD and FastICA) in forecasting water quality of the Haihe River of China, Desal. Water Treat., 154 (2019) 147–159.
  3. Y.B. Song, Quick training method for multi-layer perception and its application, Control Dec., 15 (2010) 125–127.
  4. J.F. Xiao, Q.M. Xiao, Control of switched reluctance motors based on improved BP neural networks, Recent Adv. Electr. Eng., 11 (2018) 97–102.
  5. D.X. Xu, Research on Several Filtering Algorithms with Non- Linear System, Hangzhou Dianzi University, 2014.
  6. S. Singhal, L. Wu, Training multilayer perceptions with the extended Kalman algorithm, Adv. Neural Inf. Process. Syst., 1 (1989) 133–140.
  7. I. Arasaratnam, S. Haykin, T.R. Hurd, Cubature Kalman filtering for continuous-discrete systems: theory and simulations, IEEE Trans. Signal Process., 58 (2010) 4977–4993.
  8. Y.Y. Qin, H.Y. Zhang, Kalman Filtering and Integrated Navigation Principle, Northwestern Polytechnical University Press, Xian, 1998.
  9. D. Wang, F. Yang, K.L. Tsui, Remaining useful life prediction of lithium-ion batteries based on spherical cubature particle filter, IEEE Trans. Instrum. Meas., 65 (2016) 1282–1291.
  10. X.J. Gao, L.P. Zhai, GPS/INS integrated navigation system, Optics Precis. Eng., 12 (2014) 18–22.
  11. F. Zha, J.N. Xu, IUKF neural network modeling for FOG temperature drift, IEEE Trans. Syst. Eng. Electron., 24 (2019) 838–844.
  12. X.D. Wu, Y.N. Wang, Extended and unscented Kalman filtering based feedforward neural networks for time series prediction, Appl. Math. Model., 36 (2018) 1123–1131.
  13. B. Jia, M. Xin, Y. Cheng, High-degree cubature Kalman filter, Automatica, 49 (2018) 510–518.
  14. L. Zhang, N.G. Chui, F. Yang, High-degree cubature Kalman filter and its application in target tracking, J. Harbin Eng. Univ., 4 (2016) 12–18.
  15. Y.G. Zhang, Y.L. Huang, Z.M. Wu, N. Li, A high order unscented Kalman filtering method, Acta Autom. Sin., 40 (2014) 838–848.
  16. Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Embedded cubature Kalman filter with adaptive setting of free parameter, Signal Process., 11 (2015) 112–116.
  17. Y.G. Zhang, Y.L. Huang, N. Li, L. Zhao, Interpolatory cubature Kalman filters, IET Control Theory Appl., 9 (2015) 1731–1739.
  18. Y.L. Huang, Y.G. Zhang, Z.M. Wu, N. Li, J.A. Chambers, A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices, IEEE Trans. Autom. Control, 63 (2017) 594–601.
  19. Y.L. Huang, Y.G. Zhang, Y.X. Zhao, N. Li, J.A. Chambers. A novel robust Gaussian–student’s t mixture distribution based Kalman filter, IEEE Trans. Signal Process., 67 (2019) 3606–3620.
  20. Y.L. Huang, Y.G. Zhang, J.A. Chambers, A novel Kullback– Leibler divergence minimization-based adaptive student’s t-filter, IEEE Trans. Signal Process., 67 (2019) 5417–5432.
  21. Y.L. Huang, Y.G. Zhang, N. Li, Z.M. Wu, J.A. Chambers, A novel robust student’s t-based Kalman filter, IEEE Trans. Aerosp. Electron. Syst., 53 (2017) 1545–1554.