References

  1. X. Ding, Q. Zhu, A. Zhai, L. Liu, Water quality safety prediction model for drinking water source areas in Three Gorges Reservoir and its application, Ecol. Indic., 101 (2019) 734–741.
  2. K.W. Abdelmalik, Role of statistical remote sensing for Inland water quality parameters prediction, Egypt. J. Remote Sens. Space Sci., 21 (2018) 193–200.
  3. D.J. Booker, R.A. Woods, Comparing and combining physicallybased and empirically-based approaches for estimating the hydrology of ungauged catchments, J. Hydrol., 508 (2014) 227–239.
  4. U. Seeboonruang, A statistical assessment of the impact of land uses on surface water quality indexes, J. Environ. Manage., 101 (2012) 134–142.
  5. M. Gevrey, L. Comte, D. de Zwart, E. de Deckere, S. Lek, Modeling the chemical and toxic water status of the Scheldt basin (Belgium), using aquatic invertebrate assemblages and an advanced modeling method, Environ. Pollut., 158 (2010) 3209–3218.
  6. X. Xin, K. Li, B. Finlayson, W. Yin, Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China, Water Sci. Eng., 8 (2015) 30–39.
  7. H. Runtti, S. Tuomikoski, T. Kangas, T. Kuokkanen, J. Rämö, U. Lassi, Sulphate removal from water by carbon residue from biomass gasification: effect of chemical modification methods on sulphate removal efficiency, Bioresources, 11 (2016) 3136–3152.
  8. C. Koschmann, A.-A. Calinescu, F.J. Nunez, A. Mackay, J. Fazal-Salom, D. Thomas, F. Mendez, N. Kamran, M. Dzaman, L. Mulpuri, ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma, Sci. Transl. Med., 8 (2016) 328ra28, doi: 10.1126/scitranslmed.aac8228.
  9. D. Guimarães, V.A. Leão, Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21, J. Hazard. Mater., 280 (2014) 209–215.
  10. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015, Cancer J. Clin., 66 (2016) 115–132.
  11. A. El Hmaidi, H. El Badaoui, A. Abdallaoui, B. El Moumni, Application des réseaux de neurones artificiels de type PMC pour la prédiction des teneurs en carbone organique dans les dépôts du quaternaire terminal de la mer d’Alboran, Eur. J. Sci. Res., 107 (2013) 400–413.
  12. T. Rajaee, S. Khani, M. Ravansalar, Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: a review, Chemom. Intell. Lab. Syst., 200 (2020) 1–25, doi: 10.1016/j.chemolab.2020.103978.
  13. W. Deng, G. Wang, X. Zhang, A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting, Chemom. Intell. Lab. Syst. 149 (2015) 39–49.
  14. A.H. Haghiabi, A.H. Nasrolahi, A. Parsaie, Water quality prediction using machine learning methods, Water Qual. Res. J., 53 (2018) 3–13.
  15. Z. Li, F. Peng, B. Niu, G. Li, J. Wu, Z. Miao, Water quality prediction model combining sparse auto-encoder and LSTM network, IFAC-PapersOnLine, 51 (2018) 831–836.
  16. H. Lu, X. Ma, Hybrid decision tree-based machine learning models for short-term water quality prediction, Chemosphere, 249 (2020) 1–12, doi: 10.1016/j.chemosphere.2020.126169.
  17. H.J. Mayfield, E. Bertone, C. Smith, O. Sahin, Use of a structure aware discretisation algorithm for Bayesian networks applied to water quality predictions, Math. Comput. Simul., 175 (2020) 192–201.
  18. A.N. Ahmed, F.B. Othman, H.A. Afan, R.K. Ibrahim, C.M. Fai, M.S. Hossain, M. Ehteram, A. Elshafie, Machine learning methods for better water quality prediction, J. Hydrol., 578 (2019) 1–18, doi: 10.1016/j.jhydrol.2019.124084.
  19. D. Wu, H. Wang, R. Seidu, Smart data driven quality prediction for urban water source management, Future Gener. Comput. Syst., 107 (2020) 418–432.
  20. K. Chen, H. Chen, C. Zhou, Y. Huang, X. Qi, R. Shen, F. Liu, M. Zuo, X. Zou, J. Wang, Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data, Water Res., 171 (2020) 1–10, doi: 10.1016/j. watres.2019.115454.
  21. R. Avila, B. Horn, E. Moriarty, R. Hodson, E. Moltchanova, Evaluating statistical model performance in water quality prediction, J. Environ. Manage., 206 (2018) 910–919.
  22. E. Farahani, M.R. Mosaddeghi, A.A. Mahboubi, A.R. Dexter, Prediction of soil hard-setting and physical quality using water retention data, Geoderma, 338 (2019) 343–354.
  23. M. Khadr, M. Elshemy, Data-driven modeling for water quality prediction case study: the drains system associated with Manzala Lake, Egypt, Ain Shams Eng. J., 8 (2017) 549–557.
  24. H. Ousmana, A.E. Hmaidi, M. Berrada, B. Damnati, I. Etabaai, A. Essahlaoui, Development of a neural network approach for predicting nitrate and sulfate concentration in three lakes: Ifrah, Iffer and Afourgagh, Middle Atlas Morocco, Moroccan J. Chem., 6 (2018) 245–255.
  25. L.-M.L. He, Z.-L. He, Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA, Water Res., 42 (2008) 2563–2573.
  26. W.-C. Liu, W.-B. Chen, Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models, Comput. Geosci., 45 (2012) 13–25.
  27. A. Clementking, C.J. Venkateswaran, Prediction of Water Quality Attributes Variations Using Back Propagation Neural Network (BPNN) Model, International Conference on Technology and Business Management (ICTBM-15), American University in the Emirates, 2015, pp. 128–138.
  28. M. Heydari, E. Olyaie, H. Mohebzadeh, Ö. Kisi, Development of a neural network technique for prediction of water quality parameters in the Delaware River, Pennsylvania, Middle-East J. Sci. Res., 13 (2013) 1367–1376.
  29. H. Banejad, E. Olyaie, Application of an artificial neural network model to rivers water quality indexes prediction—a case study, J. Am. Sci., 7 (2011) 60–65.
  30. Y.R. Ding, Y.J. Cai, P.D. Sun, B. Chen, The use of combined neural networks and genetic algorithms for prediction of river water quality, J. Appl. Res. Technol., 12 (2014) 493–499.
  31. N.S. Jaddi, S. Abdullah, A cooperative-competitive masterslave global-best harmony search for ANN optimization and water-quality prediction, Appl. Soft Comput., 51 (2017) 209–224.
  32. A. Beucher, R. Siemssen, S. Fröjdö, P. Österholm, A. Martinkauppi, P. Edén, Artificial neural network for mapping and characterization of acid sulfate soils: application to Sirppujoki River catchment, southwestern Finland, Geoderma, 247 (2015) 38–50.
  33. N. Noori, L. Kalin, S. Isik, Water quality prediction using SWAT-ANN coupled approach, J. Hydrol., 590 (2020) 1–10, doi: 10.1016/j.jhydrol.2020.125220.
  34. S.S. Panda, V. Garg, I. Chaubey, Artificial neural networks application in lake water quality estimation using satellite imagery, J. Environ. Inf., 4 (2004) 65–74.
  35. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci. Eng., 12 (2014) 1–8, doi: 10.1186/2052-336X-12-40.
  36. J.-P. Suen, J.W. Eheart, Evaluation of neural networks for modeling nitrate concentrations in rivers, J. Water Resour. Plann. Manage., 129 (2003) 505–510.
  37. K. Ostad-Ali-Askari, M. Shayannejad, H. Ghorbanizadeh- Kharazi, Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran, KSCE J. Civ. Eng., 21 (2017) 134–140.
  38. S. Azimi, M.A. Moghaddam, S.H. Monfared, Prediction of annual drinking water quality reduction based on groundwater resource index using the artificial neural network and fuzzy clustering, J. Contam. Hydrol., 220 (2019) 6–17.
  39. F. Qaderi, E. Babanezhad, Prediction of the groundwater remediation costs for drinking use based on quality of water resource, using artificial neural network, J. Cleaner Prod., 161 (2017) 840–849.
  40. M.J. Diamantopoulou, D.M. Papamichail, V.Z. Antonopoulos, The use of a neural network technique for the prediction of water quality parameters, Oper. Res., 5 (2005) 115–125.
  41. J. Rodier, B. Legube, N. Merlet, R. Brunet, L’analyse de L’eau, 9e éd., Eaux Naturelles, Eaux Résiduaires, Eau de Mer, Dunod, 2009. Available at: https://books.google.dz/books? id=qUEGsUBZkL0C
  42. D. Jamin, Recherche du Boson de Higgs du Modèle Standard Dans le Canal de Désintégration ZH > nu nu bb Sur le Collisionneur Tevatron dans L’expérience D0. Développement D’une Méthode D’étiquetage des Jets de Quark b Avec des Muons de Basses Impulsions Transverses, 2010. Available at: https://tel.archives-ouvertes.fr/tel-00557839.
  43. M. Naoual, A. Abdelaziz, E.H. Abdellah, Use of artificial neural networks type MLP for the prediction of phosphorus level from the physicochemical parameters of sediments, IOSR J. Comput. Eng., 18 (2016) 61–70.
  44. A. Schmitt, B. Le Blanc, M.-M. Corsini, C. Lafond, J. Bruzek, Les reseaux de neurones artificiels. Un outil de traitement de données prometteur pour l’anthropologie, Bull. Mém. Soc. D’Anthropol. Paris, 13 (2001) 1–2.
  45. S. Huo, Z. He, J. Su, B. Xi, C. Zhu, Using artificial neural network models for eutrophication prediction, Procedia Environ. Sci., 18 (2013) 310–316.
  46. N.D. Kaushika, R.K. Tomar, S.C. Kaushik, Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations, Sol. Energy, 103 (2014) 327–342.
  47. K.D. Fausch, C.L. Hawkes, M.G. Parsons, Models That Predict Standing Crop of Stream Fish from Habitat Variables: 1950- 85, Gen. Tech. Rep. PNW-GTR-213 Portland US Department of Agriculture, Forest Service, Pacific, Northwest Research Station, 1988, 52 p.
  48. H. El Badaoui, A. Abdallaoui, I. Manssouri, L. Lancelot, Elaboration de modèles mathématiques stochastiques pour la prédiction des teneurs en métaux lourds des eaux superficielles en utilisant les réseaux de neurones artificiels et la régression linéaire multiple, J. Hydrocarbon Mines Environ. Res., 3 (2012) 31–36.
  49. E.M. Brakni, Réseaux de Neurones Artificiels Appliqués à la Méthode Electromagnétique Transitoire InfiniTEM, Université du Québec en Abitibi-Témiscamingue, 2011. Available at: https://depositum.uqat.ca/id/eprint/32
  50. R.P. Lippmann, An introduction to computing with neural nets, IEEE ASSP Mag., 4 (1987) 4–22.
  51. N. Samani, M. Gohari-Moghadam, A.A. Safavi, A simple neural network model for the determination of aquifer parameters, J. Hydrol., 340 (2007) 1–11.
  52. M. Sediri, S. Hanini, H. Cherifi, M. Laidi, S.A. Turki, Dynamic adsorption modelling of P-nitrophenol in aqueous solution using artificial neural network, J. Mater. Environ. Sci., 8 (2017) 2282–2287.
  53. R. Yacef, A. Mellit, S. Belaid, Z. Şen, New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaïa, Algeria, Energy Convers. Manage., 79 (2014) 606–615.
  54. H. El Badaoui, A. Abdallaoui, L. Lancelot, Application des réseaux de neurones artificiels et des régressions linéaires multiples pour la prédiction des concentrations des métaux lourds dans les sédiments fluviaux marocains, Eur. J. Sci. Res., 107 (2013) 400–413.
  55. D.A. Belsley, E. Kuh, R.E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley, 1980. Available at: https://books.google.dz/ books?id=ALjuAAAAMAAJ
  56. S.H. Hong, M.W. Lee, D.S. Lee, J.M. Park, Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks, Biochem. Eng. J., 35 (2007) 365–370.
  57. I. Manssouri, M. Manssouri, B. El Kihel, Fault detection by K-NN algorithm and MLP neural networks in a distillation column: comparative study, J. Inf. Intell. Knowl., 3 (2011) 201–215.
  58. I. Manssouri, A. El Hmaidi, T.E. Manssouri, B. El Moumni, Prediction levels of heavy metals (Zn, Cu and Mn) in current Holocene deposits of the eastern part of the Mediterranean Moroccan margin (Alboran Sea), IOSR J. Comput. Eng., 16 (2014) 117–123.
  59. O.R. Dolling, E.A. Varas, Artificial neural networks for streamflow prediction, J. Hydraul. Res., 40 (2002) 547–554.
  60. S. Lefnaoui, N. Moulai-Mostefa, Investigation and optimization of formulation factors of a hydrogel network based on kappa carrageenan–pregelatinized starch blend using an experimental design, Colloids Surf., A, 458 (2014) 117–125.
  61. C. Voyant, M. Muselli, C. Paoli, M.-L. Nivet, Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation, Energy, 36 (2011) 348–359.
  62. M. Bélanger, N. El-Jabi, D. Caissie, F. Ashkar, J. Ribi, Estimation de la température de l’eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple, J. Water Sci., 18 (2005) 403–421.