References
- M. Shahid, S. Shamshad, M. Rafiq, Chromium speciation,
bioavailability, uptake, toxicity and detoxification in soil-plant
system: a review, Chemosphere, 178 (2017) 513–533.
- C.X. Kang, P.X. Wu, Y.W. Li, Understanding the role of clay
minerals in the chromium(VI) bioremoval by Pseudomonas
aeruginosa CCTCC AB93066 under growth condition:
microscopic, spectroscopic and kinetic analysis, World. J.
Microbiol. Biotechnol., 31 (2015) 1765–1779.
- S. Binoy, N. Ravi, G.S.R. Krishnamurti, Manganese(II)-catalyzed
and clay-minerals-mediated reduction of chromium(VI) by
citrate, Environ. Sci. Technol., 47 (2013) 13629–13636.
- P. Gupta, V. Kumar, Z. Usmani, Phosphate solubilization and
chromium(VI) remediation potential of Klebsiella sp. strain
CPSB4 isolated from the chromium contaminated agricultural
soil, Chemosphere, 192 (2017) 318–330.
- P.S. González, L.F. Ambrosio, C.E. Paisio, Chromium(VI)
remediation by a native strain: effect of environmental
conditions and removal mechanisms involved, Environ. Sci.
Pollut. Res. Int., 21 (2014) 13551–13559.
- R. Xu, K.J. Wu, H.W. Han, Co-expression of YieF and PhoN in
Deinococcus radiodurans R1 improves uranium bioprecipitation
by reducing chromium interference, Chemosphere, 211 (2018)
1156–1165.
- C.P. Chen, K.W. Juang, P.D.Y. Lee, Effects of liming on Cr(VI)
reduction and Cr phytotoxicity in Cr(VI)-contaminated soils,
Soil. Sci. Plant. Nutr., 58 (2012) 135–143.
- M.M. Kabir, A.N.M. Fakhruddin, M.A.Z. Chowdhury, Isolation
and characterization of chromium(VI)-reducing bacteria
from tannery effluents and solid wastes, World J. Microbiol.
Biotechnol., 34 (2018) 126–138.
- R. Batool, K. Yrjälä, K. Shaukat, Production of EPS under Cr(VI)
challenge in two indigenous bacteria isolated from a tannery
effluent: EPS production under Cr(VI) stressed condition,
J. Basic Microbiol., 55 (2015) 1064–1072.
- N.M. Raman, S. Asokan, N.S. Sundari, Bioremediation of
chromium(VI) by Stenotrophomonas maltophilia isolated from
tannery effluent, Int. J. Environ. Sci. Technol., 15 (2017) 207–116.
- J. Huang, J. Li, G. Wang, Production of a microcapsule
agent of chromate-reducing Lysinibacillus fusiformis ZC1
and its application in remediation of chromate-spiked soil,
Springerplus, 5 (2016) 561–571.
- J.B. Xu, Y.Z. Feng, Y.L. Wang, Effect of Rhizobacterium
Rhodopseudomonas palustris inoculation on Stevia rebaudiana plant growth and soil microbial community, Pedosphere,
28 (2018) 793–803.
- K. Sathishkumar, K. Murugan, G. Benelli, Bioreduction
of hexavalent chromium by Pseudomonas stutzeri L1 and
Acinetobacter baumannii L2, Ann. Microbiol., 67 (2016) 1–8.
- H.Z. Tavakoli, M. Abdollahy, S.J. Ahmadi, The effect of particle
size, irrigation rate and aeration rate on column bioleaching of
uranium ore, Russ. J. Non-Ferrous Met., 58 (2017) 188–199.
- A. Hauwa, R. Mohamed, A. Al-Gheethi, Harvesting of
Botryococcus sp. biomass from greywater by natural coagulants,
Waste Biomass Valorization, 9 (2017) 1841–1853.
- A.A. Gheethia, E. Noman, R.M.S.R. Mohameda, Optimizing
of pharmaceutical active compounds biodegradability in
secondary effluents by β-lactamase from Bacillus subtilis using central composite design, J. Hazard. Mater., 365 (2019)
883–894.
- K. Kalantari, M. Ahmad, H. Masoumi, Rapid adsorption of
heavy metals by Fe3O4/talc nanocomposite and optimization
study using response surface methodology, Int. J. Mol. Sci.,
153390 (2014) 12913–12927.
- H. Khatoon, J.P.N. Rai, Optimization studies on biodegradation
of atrazine by Bacillus badius ABP6 strain using response surface
methodology, Biotechnol. Rep., 1 (2020) 446–459.
- H. Li, V.D.D. Sander, F. Bunge, Optimization of on-chip bacterial
culture conditions using the Box–Behnken design response
surface methodology for faster drug susceptibility screening,
Talanta, 194 (2019) 627–633.
- A.C. Rodrigues, A.I. Fontão, A. Coelho, Response surface
statistical optimization of bacterial nanocellulose fermentation
in static culture using a low-cost medium, New Biotechnol.,
21 (2018) 1536–1542.
- J. Zhang, Y.C. Dong, L.L. Fan, Optimization of culture medium
compositions for gellan gum production by a halobacterium
Sphingomonas paucimobilis, Carbohydr. Polym., 115 (2015)
694–700.
- A. Pandey, A. Gupta, A. Sunny, Multi-objective optimization
of media components for improved algae biomass, fatty acid
and starch biosynthesis from Scenedesmus sp. ASK22 using
desirability function approach, Renewable Energy, 150 (2020)
476–486.
- Y. Wang, P. Bing, Z. Yang, Bacterial community dynamics
during bioremediation of Cr(VI)-contaminated soil, Appl. Soil.
Ecol., 85 (2015) 50–55.
- J. Xie, J. Lin, X. Zhou, pH-dependent microbial reduction of
uranium(VI) in carbonate-free solutions: UV-vis, XPS, TEM,
and thermodynamic studies, Environ. Sci. Pollut. Res., 25 (2018)
22308–22317.
- G. Chen, J. Han, Y. Mu, Two-stage chromium isotope
fractionation during microbial Cr(VI) reduction, Water Res.,
148 (2018) 10–18.
- Q. Zhang, K. Amor, S.J.G. Galer, Variations of stable isotope
fractionation during bacterial chromium reduction processes
and their implications, Chem. Geol., 481 (2018) 155–164.
- X.N. Huang, D. Min, D.F. Liu, Formation mechanism of organochromium(
III) complexes from bioreduction of chromium (VI)
by Aeromonas hydrophila, Environ. Int., 129 (2019) 86–94.
- Y.E. Zhu, H. Li, G.X. Zhang, Removal of hexavalent chromium
from aqueous solution by different surface-modified biochars:
acid washing, nanoscale zero-valent iron and ferric iron
loading, Bioresour. Technol., 261 (2018) 142–150.
- A. Hedayatkhah, M.S. Cretoiu, G. Emtiazi, Bioremediation of
chromium contaminated water by diatoms with concomitant
lipid accumulation for biofuel production, J. Environ.
Manage., 227 (2018) 313–320.
- A.V. Schenone, L.O. Conte, M.A. Botta, Modeling and
optimization of photo-Fenton degradation of 2,4-D using
ferrioxalate complex and response surface methodology (RSM),
J. Environ. Manage., 155 (2015) 177–183.
- C. Vijoyeta, S. Shubhalakshmi, C. Punarbasu, Assessment on
removal efficiency of chromium by the isolated manglicolous
fungi from Indian Sundarban mangrove forest: removal and
optimization using response surface methodology, Environ.
Technol. Innovation, 10 (2018) 335–344.
- J.T.E. Lee, Q.K. Wang, E.Y. Lim, Optimization of bioaugmentation
of the anaerobic digestion of Axonopus compressus cowgrass
for the production of biomethane, J. Cleaner Prod., 258 (2020)
1209–1232.
- G. Fierrosromero, M. Gómezramírez, G.E. Arenasisaac,
Identification of Bacillus megaterium and Microbacterium
liquefaciens genes involved in metal resistance and metal
removal, Can. J. Microbiol., 62 (2016) 505–513.
- S. Das, J. Mishra, S. K. Das, Investigation on mechanism of
Cr(VI) reduction and removal by Bacillus amyloliquefaciens,
a novel chromate tolerant bacterium isolated from chromite
mine soil, Chemosphere, 96 (2014) 112–121.
- R. Jobby, P. Jha, A.K. Yadav, Biosorption and biotransformation
of hexavalent chromium [Cr(VI)]: a comprehensive review,
Chemosphere, 207 (2018) 255–266.
- X.Q. Zhao, J. Huang, J. Lu, Study on the influence of soil
microbial community on the long-term heavy metal pollution
of different land use types and depth layers in mine, Ecotoxicol.
Environ. Saf., 170 (2019) 218–226.
- R.E. Beattie, H. Wyatt, M.F. Campa, Variation in microbial
community structure correlates with heavy-metal contamination
in soils decades after mining ceased, Soil Biol. Biochem.,
126 (2018) 57–63.
- F. Vendruscolo, G.L.D.R. Ferreira, N.R.A. Filho, Biosorption
of hexavalent chromium by microorganisms, Int. Biodeterior.
Biodegrad., 119 (2016) 87–95.
- B. Liu, G. Su, Y.R. Yang, Vertical distribution of microbial
communities in chromium-contaminated soil and isolation of
Cr(IV)-reducing strains, Ecotoxicol. Environ. Saf., 180 (2019)
242–251.
- H. Huang, K. Wu, A. Khan, A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces
hexavalent chromium, Bioresour. Technol., 207 (2016) 370–378.
- R.N. Bharagava, S. Mishra, Hexavalent chromium reduction
potential of Cellulosimicrobium sp. isolated from common
effluent treatment plant of tannery industries, Ecotoxicol.
Environ. Saf., 147 (2018) 102–109.
- D. Long, X. Tang, K. Cai, Cr(VI) resistance and removal by
indigenous bacteria isolated from chromium-contaminated
soil, J. Microbiol. Biotechnol., 23 (2013) 1123–1132.
- A. Elahi, A. Rehman, Comparative behavior of two gram
positive Cr6+ resistant bacterial strains Bacillus aerius S1 and
Brevibacterium iodinum S2 under hexavalent chromium stress,
Biotechnol. Rep., 21 (2019) 1–8.
- Y. Gong, C.J. Werth, Y. He, Intracellular versus extracellular
accumulation of hexavalent chromium reduction products
by Geobacter sulfurreducens PCA, Environ. Pollut., 240 (2018)
485–492.
- D.C. Prabhakaran, S. Subramanian, Studies on the bioremediation
of chromium from aqueous solutions using
C. paurometabolum, Trans. Indian Inst. Metals, 70 (2016) 497–509.
- Z. Chen, S. Song, Y. Wen, Reduction of Cr(VI) into Cr(III) by
organelles of Chlorella vulgaris in aqueous solution: an organellelevel
attempt, Sci. Total Environ., 572 (2016) 361–368.
- Y.P. Xie, H. Li, X.W. Wang, Kinetic simulating of Cr(VI) removal
by the waste Chlorella vulgaris biomass, J. Taiwan Inst. Chem.
Eng., 45 (2014) 1773–1782.
- Q. Zeng, Y. Hu, Y. Yang, Cell envelop is the key site for Cr(IV)
reduction by Oceanobacillus oncorhynchi W4, a newly isolated
Cr(IV) reducing bacterium, J. Hazard. Mater., 368 (2019)
149–155.
- M. Gan, C.Y. Gu, J.J. Ding, Hexavalent chromium remediation
based on the synergistic effect between chemoautotrophic
bacteria and sulfide minerals, Ecotoxicol. Environ. Saf.,
173 (2019) 118–130.