References

  1. M. Shahid, S. Shamshad, M. Rafiq, Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review, Chemosphere, 178 (2017) 513–533.
  2. C.X. Kang, P.X. Wu, Y.W. Li, Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis, World. J. Microbiol. Biotechnol., 31 (2015) 1765–1779.
  3. S. Binoy, N. Ravi, G.S.R. Krishnamurti, Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate, Environ. Sci. Technol., 47 (2013) 13629–13636.
  4. P. Gupta, V. Kumar, Z. Usmani, Phosphate solubilization and chromium(VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil, Chemosphere, 192 (2017) 318–330.
  5. P.S. González, L.F. Ambrosio, C.E. Paisio, Chromium(VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved, Environ. Sci. Pollut. Res. Int., 21 (2014) 13551–13559.
  6. R. Xu, K.J. Wu, H.W. Han, Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference, Chemosphere, 211 (2018) 1156–1165.
  7. C.P. Chen, K.W. Juang, P.D.Y. Lee, Effects of liming on Cr(VI) reduction and Cr phytotoxicity in Cr(VI)-contaminated soils, Soil. Sci. Plant. Nutr., 58 (2012) 135–143.
  8. M.M. Kabir, A.N.M. Fakhruddin, M.A.Z. Chowdhury, Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes, World J. Microbiol. Biotechnol., 34 (2018) 126–138.
  9. R. Batool, K. Yrjälä, K. Shaukat, Production of EPS under Cr(VI) challenge in two indigenous bacteria isolated from a tannery effluent: EPS production under Cr(VI) stressed condition, J. Basic Microbiol., 55 (2015) 1064–1072.
  10. N.M. Raman, S. Asokan, N.S. Sundari, Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent, Int. J. Environ. Sci. Technol., 15 (2017) 207–116.
  11. J. Huang, J. Li, G. Wang, Production of a microcapsule agent of chromate-reducing Lysinibacillus fusiformis ZC1 and its application in remediation of chromate-spiked soil, Springerplus, 5 (2016) 561–571.
  12. J.B. Xu, Y.Z. Feng, Y.L. Wang, Effect of Rhizobacterium Rhodopseudomonas palustris inoculation on Stevia rebaudiana plant growth and soil microbial community, Pedosphere, 28 (2018) 793–803.
  13. K. Sathishkumar, K. Murugan, G. Benelli, Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2, Ann. Microbiol., 67 (2016) 1–8.
  14. H.Z. Tavakoli, M. Abdollahy, S.J. Ahmadi, The effect of particle size, irrigation rate and aeration rate on column bioleaching of uranium ore, Russ. J. Non-Ferrous Met., 58 (2017) 188–199.
  15. A. Hauwa, R. Mohamed, A. Al-Gheethi, Harvesting of Botryococcus sp. biomass from greywater by natural coagulants, Waste Biomass Valorization, 9 (2017) 1841–1853.
  16. A.A. Gheethia, E. Noman, R.M.S.R. Mohameda, Optimizing of pharmaceutical active compounds biodegradability in secondary effluents by β-lactamase from Bacillus subtilis using central composite design, J. Hazard. Mater., 365 (2019) 883–894.
  17. K. Kalantari, M. Ahmad, H. Masoumi, Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology, Int. J. Mol. Sci., 153390 (2014) 12913–12927.
  18. H. Khatoon, J.P.N. Rai, Optimization studies on biodegradation of atrazine by Bacillus badius ABP6 strain using response surface methodology, Biotechnol. Rep., 1 (2020) 446–459.
  19. H. Li, V.D.D. Sander, F. Bunge, Optimization of on-chip bacterial culture conditions using the Box–Behnken design response surface methodology for faster drug susceptibility screening, Talanta, 194 (2019) 627–633.
  20. A.C. Rodrigues, A.I. Fontão, A. Coelho, Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium, New Biotechnol., 21 (2018) 1536–1542.
  21. J. Zhang, Y.C. Dong, L.L. Fan, Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis, Carbohydr. Polym., 115 (2015) 694–700.
  22. A. Pandey, A. Gupta, A. Sunny, Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from Scenedesmus sp. ASK22 using desirability function approach, Renewable Energy, 150 (2020) 476–486.
  23. Y. Wang, P. Bing, Z. Yang, Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil, Appl. Soil. Ecol., 85 (2015) 50–55.
  24. J. Xie, J. Lin, X. Zhou, pH-dependent microbial reduction of uranium(VI) in carbonate-free solutions: UV-vis, XPS, TEM, and thermodynamic studies, Environ. Sci. Pollut. Res., 25 (2018) 22308–22317.
  25. G. Chen, J. Han, Y. Mu, Two-stage chromium isotope fractionation during microbial Cr(VI) reduction, Water Res., 148 (2018) 10–18.
  26. Q. Zhang, K. Amor, S.J.G. Galer, Variations of stable isotope fractionation during bacterial chromium reduction processes and their implications, Chem. Geol., 481 (2018) 155–164.
  27. X.N. Huang, D. Min, D.F. Liu, Formation mechanism of organochromium( III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila, Environ. Int., 129 (2019) 86–94.
  28. Y.E. Zhu, H. Li, G.X. Zhang, Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: acid washing, nanoscale zero-valent iron and ferric iron loading, Bioresour. Technol., 261 (2018) 142–150.
  29. A. Hedayatkhah, M.S. Cretoiu, G. Emtiazi, Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production, J. Environ. Manage., 227 (2018) 313–320.
  30. A.V. Schenone, L.O. Conte, M.A. Botta, Modeling and optimization of photo-Fenton degradation of 2,4-D using ferrioxalate complex and response surface methodology (RSM), J. Environ. Manage., 155 (2015) 177–183.
  31. C. Vijoyeta, S. Shubhalakshmi, C. Punarbasu, Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology, Environ. Technol. Innovation, 10 (2018) 335–344.
  32. J.T.E. Lee, Q.K. Wang, E.Y. Lim, Optimization of bioaugmentation of the anaerobic digestion of Axonopus compressus cowgrass for the production of biomethane, J. Cleaner Prod., 258 (2020) 1209–1232.
  33. G. Fierrosromero, M. Gómezramírez, G.E. Arenasisaac, Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal, Can. J. Microbiol., 62 (2016) 505–513.
  34. S. Das, J. Mishra, S. K. Das, Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil, Chemosphere, 96 (2014) 112–121.
  35. R. Jobby, P. Jha, A.K. Yadav, Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review, Chemosphere, 207 (2018) 255–266.
  36. X.Q. Zhao, J. Huang, J. Lu, Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine, Ecotoxicol. Environ. Saf., 170 (2019) 218–226.
  37. R.E. Beattie, H. Wyatt, M.F. Campa, Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased, Soil Biol. Biochem., 126 (2018) 57–63.
  38. F. Vendruscolo, G.L.D.R. Ferreira, N.R.A. Filho, Biosorption of hexavalent chromium by microorganisms, Int. Biodeterior. Biodegrad., 119 (2016) 87–95.
  39. B. Liu, G. Su, Y.R. Yang, Vertical distribution of microbial communities in chromium-contaminated soil and isolation of Cr(IV)-reducing strains, Ecotoxicol. Environ. Saf., 180 (2019) 242–251.
  40. H. Huang, K. Wu, A. Khan, A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium, Bioresour. Technol., 207 (2016) 370–378.
  41. R.N. Bharagava, S. Mishra, Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries, Ecotoxicol. Environ. Saf., 147 (2018) 102–109.
  42. D. Long, X. Tang, K. Cai, Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil, J. Microbiol. Biotechnol., 23 (2013) 1123–1132.
  43. A. Elahi, A. Rehman, Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress, Biotechnol. Rep., 21 (2019) 1–8.
  44. Y. Gong, C.J. Werth, Y. He, Intracellular versus extracellular accumulation of hexavalent chromium reduction products by Geobacter sulfurreducens PCA, Environ. Pollut., 240 (2018) 485–492.
  45. D.C. Prabhakaran, S. Subramanian, Studies on the bioremediation of chromium from aqueous solutions using C. paurometabolum, Trans. Indian Inst. Metals, 70 (2016) 497–509.
  46. Z. Chen, S. Song, Y. Wen, Reduction of Cr(VI) into Cr(III) by organelles of Chlorella vulgaris in aqueous solution: an organellelevel attempt, Sci. Total Environ., 572 (2016) 361–368.
  47. Y.P. Xie, H. Li, X.W. Wang, Kinetic simulating of Cr(VI) removal by the waste Chlorella vulgaris biomass, J. Taiwan Inst. Chem. Eng., 45 (2014) 1773–1782.
  48. Q. Zeng, Y. Hu, Y. Yang, Cell envelop is the key site for Cr(IV) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(IV) reducing bacterium, J. Hazard. Mater., 368 (2019) 149–155.
  49. M. Gan, C.Y. Gu, J.J. Ding, Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals, Ecotoxicol. Environ. Saf., 173 (2019) 118–130.