References
- D.C. Adriano, Trace Elements in Terrestrial Environments:
Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.,
Springer-Verlag, New York, NY, 2001.
- M. Hutton, Sources of cadmium in the environment, Ecotoxicol.
Environ. Saf., 7 (1983) 9–24.
- R.D. Davis, Cadmium-A complex environmental problem part
II: cadmium in sludges used as fertilizer, Experientia, 40 (1984)
117–126.
- L. Jarup, L. Hellstrom, T. Alfven, M. Carlsson, A. Grubb,
B. Persson, C. Pettersson, G. Spang, A. Schutz, C. Elinder,
Low level exposure to cadmium and early kidney damage:
the OSCAR study, J. Occup. Environ. Med., 57 (2000) 668–672.
- M. Fleischer, A.F. Sarofim, D.W. Fassett, P. Hammond,
H.T. Shacklette, I.C. Nisbet, S. Epstein, Environmental impact of
cadmium: a review by the panel on hazardous trace substances,
Environ. Health Perspect., 7 (1974) 253–323.
- P. Elliott, R. Arnold, S. Coching, N. Eaton, L. Jarup, J. Jones,
M. Quinn, M. Rosato, I. Thornton, M. Toledano, E. Tristan,
J. Wakefield, Risk of mortality, cancer incidence, and stroke in
a population potentially exposed to cadmium, Occup. Environ.
Med., 57 (2000) 94–97.
- M. Nishijo, H. Nakagawa, Y. Suwazono, K. Nogawa, T. Kido,
Causes of death in patients with Itai–itai disease suffering
from severe chronic cadmium poisoning: a nested case-control
analysis of a follow-up study in Japan, BMJ Open, 7 (2017) 1–7,
doi: 10.1136/bmjopen-2016–015694.
- P.M. Ferraro, S. Costanzi, A. Naticchia, A. Sturniolo, G. Gambaro,
Low level exposure to cadmium increases the risk of
chronic kidney disease: analysis of the NHANES 1999–2006,
BMC Public Health, 10 (2010) 1–8, doi: 10.1186/1471-2458-10-304.
- H. Liu, W. Xia, S. Xu, B. Zhang, B. Lu, Z. Huang, H. Zhang,
Y. Jian, W. Liu, Y. Peng, X. Sun, Y. Li, Cadmium body burden
and pregnancy-induced hypertension, Int. J. Hyg. Environ.
Health, 221 (2018) 246–251.
- A. Engstom, K. Michaelsson, M. Vahter, B. Julin, A. Wolk,
A. Akesson, Associations between dietary cadmium exposure
and bone mineral density and risk of osteoporosis and fractures
among women, Bone, 50 (2012) 1372–1378.
- J.A. McElroy, M.M. Shafer, A. Trentham-Dietz, J.M. Hampton,
P.A. Newcomb, Cadmium exposure and breast cancer risk,
J. Natl. Cancer Inst., 98 (2006) 869–873.
- J.K. Song, H. Luo, X.H. Yin, G.L. Huang, S.Y. Luo, D. Lin,
J. Zhu, Association between cadmium exposure and renal
cancer risk: a meta-analysis of observational studies, Sci. Rep.,
5 (2015) 1–8.
- J. Mastusik, T. Bajda, M. Manecki, Immobilization of aqueous
cadmium by addition of phosphates, J. Hazard. Mater.,
152 (2008) 1332–1339.
- Z. Zang, J. Ren, M. Young, X. Song, C. Zhang, J. Chen, F. Li,
G. Guo, Competitive immobilization of Pb in an aqueous
ternary-metals system by soluble phosphates with varying pH,
Chemosphere, 159 (2016) 58–65.
- J. Kheriji, D. Tabassi, B. Hamrouni, Removal of Cd(II) ions from
aqueous solution and industrial effluent using reverse osmosis
and nanofiltration membranes, Water Sci. Technol., 72 (2015)
1206–1216.
- C.W. Wong, J.P Barford, G. Chen, G. McKay, Kinetics and
equilibrium studies for the removal of cadmium ions by ion
exchange resin, J. Environ. Chem. Eng., 2 (2014) 698–707.
- S.Y. Kim, M.R. Jin, C.H. Chung, Y.S. Yun, K.Y. Jahng, K.Y. Yu,
Biosorption of cationic basic dye and cadmium by the novel
biosorbent Bacillus catenulatus JB-022 strain, J. Biosci. Bioeng.,
119 (2014) 433–439.
- F.A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash, M.A. Atieh,
Cadmium removal by activated carbon, carbon nanotubes,
carbon nanofibers, and carbon fly ash: a comparative study,
Desal. Water Treat., 53 (2013) 1–13.
- D. Wang, X. Guan, F. Huang, S. Li, Y. Shen, J. Chen, H. Long,
Removal of heavy metal ions by biogenic hydroxyapatite:
morphology influence and mechanism study, Russ. J. Phys.
Chem., 90 (2016) 1557–1562.
- A. Dybowska, D.A.C. Manning, M.J. Collins, T. Wess,
S. Woodgate, E. Valsami-Jones, An evaluation of the reactivity
of synthetic and natural apatites in the presence of aqueous
metals, Sci. Total Environ., 407 (2009) 2953–2965.
- S. Kannan, F.G. Neunhoeffer, J. Neubauer, S. Pina, P.M.C. Torres,
J.M.F. Ferreira, Synthesis and structural characterization
of strontium- and magnesium-co-substituted β-tricalcium
phosphate, Acta Biomater., 6 (2010) 571–576.
- S. Pina, P.M. Torres, F.G. Neunhoeffer, J. Neubauer,
J.M.F. Ferreira, Newly developed Sr-substituted α-TCP bone
cements, Acta Biomater., 6 (2010) 928–935.
- S. Kannan, F.G. Neunhoeffer, J. Neubauer, J.M.F. Ferreira,
Cosubstitution of zinc and strontium in β-tricalcium phosphate:
synthesis and characterization, J. Am. Ceram. Soc., 94 (2010)
230–235.
- S. Kannan, F.G. Neunhoeffer, J. Neubauer, A.H.S. Rebelo,
P. Valério, J.M.F. Ferreira, Rietveld structure and in vitro
analysis on the influence of magnesium in biphasic
(hydroxyapatite and β-tricalcium phosphate) mixtures,
J. Biomed. Mater. Res. Part B, 90 (2008) 404–411.
- A.S. Neto, A.C. Fonseca, J.C.C. Abrantes, J.F.J. Coelho,
J.M.F. Ferreira, Surface functionalization of cuttlefish bonederived
biphasic calcium phosphate scaffolds with polymeric
coatings, Mater. Sci. Eng., C, 105 (2019) 1–41, doi: 10.1016/j.
msec.2019.110014.
- S. Kannan, F.G. Neunhoeffer, J. Neubauer, J.M.F. Ferreira, Ionic
substitutions in biphasic hydroxyapatite and β-tricalcium
phosphate mixtures: structural analysis by rietveld refinement,
J. Am. Ceram. Soc., 91 (2008) 1–12.
- A.H.S. Rebelo, J.M.F. Ferreira, Comparison of cadmium removal
efficiency by two calcium phosphate powders, J. Environ.
Chem. Eng., 5 (2017) 1475–1483.
- R. Aouay, S. Jebri, A. Rebelo, J.M.F. Ferreira, I. Khattech,
Enhanced cadmium removal from water by hydroxyapatite
subjected to different thermal treatments, J. Water Supply Res.
Technol. AQUA, 69 (2020) 678–693.
- D. Marchat, D. Bernache-Assollant, E. Champion, Cadmium
fixation by synthetic hydroxyapatite in aqueous solution –
thermal behaviour, J. Hazard. Mater., 139 (2007) 453–460.
- G.S. Johnson, M.R. Mucalo, M.A. Lorier, U. Gieland,
H. Mucha, The processing and characterization of animalderived
bone to yield materials with biomedical applications.
Part II: milled bone powders, reprecipitated hydroxyapatite
and the potential uses of these materials, J. Mater. Sci.: Mater.
Med., 11 (2000) 725–741.
- S. Jebri, I. Khattech, M. Jemal, Standard enthalpy, entropy
and Gibbs free energy of formation of “A” type carbonate
phosphocalcium hydroxyapatites, J. Chem. Thermodyn.,
106 (2017) 84–94.
- S. Ben Abdelkader, A. Ben Cherifa, I. Khattech, M. Jemal,
Synthesis, characterization and thermochemistry of trimagnesium
phosphate and tri-calcium phosphate, Thermochim.
Acta, 334 (1999) 123–129.
- A. Ben Cherifa, M. Jemal, Enthalpy of formation and mixing
of calcium-cadmium phosphoapatites, Phosphorus Res. Bull.,
15 (2004) 113–118.
- A. Ben Cherifa, M. Jemal, Synthèse et thermochimie de
phosphates au cadmium Partie I: Cas du phosphate tricadmique
et de la chlorapatite cadmiée, Thermochim. Acta, 366 (2001) 1–6.
- R. Myers, The Basics of Chemistry: Basics of the Hard Sciences,
Greenwood Press, Westport, Ireland, 2003.
- K. Ishikawa, Bone substitute fabrication based on dissolutionprecipitation
reactions, Materials, 3 (2010) 1138–1155.
- Y.S. Ho, Review of second-order models for adsorption systems,
J. Hazard. Mater., 136 (2006) 681–689.
- H. Madupalli, B. Pavan, M.M.J. Tecklenburg, Carbonate
substitution in the mineral component of bone: discriminating
the structural changes, simultaneously imposed by carbonate in
A and B sites of apatite, J. Solid State Chem., 255 (2017) 27–35.
- S.L. Bee, Z.A. Abdul Hamid, Characterization of chicken bone
waste-derived hydroxyapatite and its functionality on chitosan
membrane for guided bone regeneration, Compos. Part B: Eng.,
163 (2019) 562–573.
- L.C. Bonar, A.H. Roufosse, W.K. Sabine, M.D. Grynpas,
M.J. Glimcher, X-ray diffraction studies of the crystallinity of
bone mineral in newly synthesized and density fractionated
bone, Calcif. Tissue Int., 35 (1983) 202–209.
- J.C. Labarthe, G. Bonel, G. Montel, Structure and properties
of B-type phosphocalcium carbonate apatites, Ann. Chim.,
8 (1973) 289–301.
- N. Kourkoumelis, I. Balatsoukas, M. Tzaphlidou, Ca/P
concentration ratio at different sites of normal and osteoporotic
rabbit bones evaluated by Auger and energy dispersive
X-ray spectroscopy, J. Biol. Phys., 38 (2011) 279–291.
- E.A. Ofudje, I.A. Adeogun, M. Idowu, Simultaneous removals
of cadmium(II) ions and reactive yellow 4 dye from aqueous
solution by bone meal-derived apatite: kinetics, equilibrium
and thermodynamic evaluations, J. Anal. Sci. Technol.,
11 (2020) 1–16.