References

  1. D.C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed., Springer-Verlag, New York, NY, 2001.
  2. M. Hutton, Sources of cadmium in the environment, Ecotoxicol. Environ. Saf., 7 (1983) 9–24.
  3. R.D. Davis, Cadmium-A complex environmental problem part II: cadmium in sludges used as fertilizer, Experientia, 40 (1984) 117–126.
  4. L. Jarup, L. Hellstrom, T. Alfven, M. Carlsson, A. Grubb, B. Persson, C. Pettersson, G. Spang, A. Schutz, C. Elinder, Low level exposure to cadmium and early kidney damage: the OSCAR study, J. Occup. Environ. Med., 57 (2000) 668–672.
  5. M. Fleischer, A.F. Sarofim, D.W. Fassett, P. Hammond, H.T. Shacklette, I.C. Nisbet, S. Epstein, Environmental impact of cadmium: a review by the panel on hazardous trace substances, Environ. Health Perspect., 7 (1974) 253–323.
  6. P. Elliott, R. Arnold, S. Coching, N. Eaton, L. Jarup, J. Jones, M. Quinn, M. Rosato, I. Thornton, M. Toledano, E. Tristan, J. Wakefield, Risk of mortality, cancer incidence, and stroke in a population potentially exposed to cadmium, Occup. Environ. Med., 57 (2000) 94–97.
  7. M. Nishijo, H. Nakagawa, Y. Suwazono, K. Nogawa, T. Kido, Causes of death in patients with Itai–itai disease suffering from severe chronic cadmium poisoning: a nested case-control analysis of a follow-up study in Japan, BMJ Open, 7 (2017) 1–7, doi: 10.1136/bmjopen-2016–015694.
  8. P.M. Ferraro, S. Costanzi, A. Naticchia, A. Sturniolo, G. Gambaro, Low level exposure to cadmium increases the risk of chronic kidney disease: analysis of the NHANES 1999–2006, BMC Public Health, 10 (2010) 1–8, doi: 10.1186/1471-2458-10-304.
  9. H. Liu, W. Xia, S. Xu, B. Zhang, B. Lu, Z. Huang, H. Zhang, Y. Jian, W. Liu, Y. Peng, X. Sun, Y. Li, Cadmium body burden and pregnancy-induced hypertension, Int. J. Hyg. Environ. Health, 221 (2018) 246–251.
  10. A. Engstom, K. Michaelsson, M. Vahter, B. Julin, A. Wolk, A. Akesson, Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women, Bone, 50 (2012) 1372–1378.
  11. J.A. McElroy, M.M. Shafer, A. Trentham-Dietz, J.M. Hampton, P.A. Newcomb, Cadmium exposure and breast cancer risk, J. Natl. Cancer Inst., 98 (2006) 869–873.
  12. J.K. Song, H. Luo, X.H. Yin, G.L. Huang, S.Y. Luo, D. Lin, J. Zhu, Association between cadmium exposure and renal cancer risk: a meta-analysis of observational studies, Sci. Rep., 5 (2015) 1–8.
  13. J. Mastusik, T. Bajda, M. Manecki, Immobilization of aqueous cadmium by addition of phosphates, J. Hazard. Mater., 152 (2008) 1332–1339.
  14. Z. Zang, J. Ren, M. Young, X. Song, C. Zhang, J. Chen, F. Li, G. Guo, Competitive immobilization of Pb in an aqueous ternary-metals system by soluble phosphates with varying pH, Chemosphere, 159 (2016) 58–65.
  15. J. Kheriji, D. Tabassi, B. Hamrouni, Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes, Water Sci. Technol., 72 (2015) 1206–1216.
  16. C.W. Wong, J.P Barford, G. Chen, G. McKay, Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin, J. Environ. Chem. Eng., 2 (2014) 698–707.
  17. S.Y. Kim, M.R. Jin, C.H. Chung, Y.S. Yun, K.Y. Jahng, K.Y. Yu, Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain, J. Biosci. Bioeng., 119 (2014) 433–439.
  18. F.A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash, M.A. Atieh, Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study, Desal. Water Treat., 53 (2013) 1–13.
  19. D. Wang, X. Guan, F. Huang, S. Li, Y. Shen, J. Chen, H. Long, Removal of heavy metal ions by biogenic hydroxyapatite: morphology influence and mechanism study, Russ. J. Phys. Chem., 90 (2016) 1557–1562.
  20. A. Dybowska, D.A.C. Manning, M.J. Collins, T. Wess, S. Woodgate, E. Valsami-Jones, An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals, Sci. Total Environ., 407 (2009) 2953–2965.
  21. S. Kannan, F.G. Neunhoeffer, J. Neubauer, S. Pina, P.M.C. Torres, J.M.F. Ferreira, Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate, Acta Biomater., 6 (2010) 571–576.
  22. S. Pina, P.M. Torres, F.G. Neunhoeffer, J. Neubauer, J.M.F. Ferreira, Newly developed Sr-substituted α-TCP bone cements, Acta Biomater., 6 (2010) 928–935.
  23. S. Kannan, F.G. Neunhoeffer, J. Neubauer, J.M.F. Ferreira, Cosubstitution of zinc and strontium in β-tricalcium phosphate: synthesis and characterization, J. Am. Ceram. Soc., 94 (2010) 230–235.
  24. S. Kannan, F.G. Neunhoeffer, J. Neubauer, A.H.S. Rebelo, P. Valério, J.M.F. Ferreira, Rietveld structure and in vitro analysis on the influence of magnesium in biphasic (hydroxyapatite and β-tricalcium phosphate) mixtures, J. Biomed. Mater. Res. Part B, 90 (2008) 404–411.
  25. A.S. Neto, A.C. Fonseca, J.C.C. Abrantes, J.F.J. Coelho, J.M.F. Ferreira, Surface functionalization of cuttlefish bonederived biphasic calcium phosphate scaffolds with polymeric coatings, Mater. Sci. Eng., C, 105 (2019) 1–41, doi: 10.1016/j. msec.2019.110014.
  26. S. Kannan, F.G. Neunhoeffer, J. Neubauer, J.M.F. Ferreira, Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by rietveld refinement, J. Am. Ceram. Soc., 91 (2008) 1–12.
  27. A.H.S. Rebelo, J.M.F. Ferreira, Comparison of cadmium removal efficiency by two calcium phosphate powders, J. Environ. Chem. Eng., 5 (2017) 1475–1483.
  28. R. Aouay, S. Jebri, A. Rebelo, J.M.F. Ferreira, I. Khattech, Enhanced cadmium removal from water by hydroxyapatite subjected to different thermal treatments, J. Water Supply Res. Technol. AQUA, 69 (2020) 678–693.
  29. D. Marchat, D. Bernache-Assollant, E. Champion, Cadmium fixation by synthetic hydroxyapatite in aqueous solution – thermal behaviour, J. Hazard. Mater., 139 (2007) 453–460.
  30. G.S. Johnson, M.R. Mucalo, M.A. Lorier, U. Gieland, H. Mucha, The processing and characterization of animalderived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials, J. Mater. Sci.: Mater. Med., 11 (2000) 725–741.
  31. S. Jebri, I. Khattech, M. Jemal, Standard enthalpy, entropy and Gibbs free energy of formation of “A” type carbonate phosphocalcium hydroxyapatites, J. Chem. Thermodyn., 106 (2017) 84–94.
  32. S. Ben Abdelkader, A. Ben Cherifa, I. Khattech, M. Jemal, Synthesis, characterization and thermochemistry of trimagnesium phosphate and tri-calcium phosphate, Thermochim. Acta, 334 (1999) 123–129.
  33. A. Ben Cherifa, M. Jemal, Enthalpy of formation and mixing of calcium-cadmium phosphoapatites, Phosphorus Res. Bull., 15 (2004) 113–118.
  34. A. Ben Cherifa, M. Jemal, Synthèse et thermochimie de phosphates au cadmium Partie I: Cas du phosphate tricadmique et de la chlorapatite cadmiée, Thermochim. Acta, 366 (2001) 1–6.
  35. R. Myers, The Basics of Chemistry: Basics of the Hard Sciences, Greenwood Press, Westport, Ireland, 2003.
  36. K. Ishikawa, Bone substitute fabrication based on dissolutionprecipitation reactions, Materials, 3 (2010) 1138–1155.
  37. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  38. H. Madupalli, B. Pavan, M.M.J. Tecklenburg, Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite, J. Solid State Chem., 255 (2017) 27–35.
  39. S.L. Bee, Z.A. Abdul Hamid, Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration, Compos. Part B: Eng., 163 (2019) 562–573.
  40. L.C. Bonar, A.H. Roufosse, W.K. Sabine, M.D. Grynpas, M.J. Glimcher, X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone, Calcif. Tissue Int., 35 (1983) 202–209.
  41. J.C. Labarthe, G. Bonel, G. Montel, Structure and properties of B-type phosphocalcium carbonate apatites, Ann. Chim., 8 (1973) 289–301.
  42. N. Kourkoumelis, I. Balatsoukas, M. Tzaphlidou, Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy, J. Biol. Phys., 38 (2011) 279–291.
  43. E.A. Ofudje, I.A. Adeogun, M. Idowu, Simultaneous removals of cadmium(II) ions and reactive yellow 4 dye from aqueous solution by bone meal-derived apatite: kinetics, equilibrium and thermodynamic evaluations, J. Anal. Sci. Technol., 11 (2020) 1–16.