References

  1. Y. Ben, H.F. Caixia, L. Min, W. Lei, H. Ming, C. Zheng, Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review, Environ. Res., 169 (2019) 483–493.
  2. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices: a review, J. Environ. Manage., 92 (2011) 2304–2347.
  3. A. Jia, Y. Wan, Y. Xiao, J. Hu, Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant, Water Res., 46 (2012) 387–394.
  4. J. Zhang, M. Lu, J. Wan, Y. Sun, H. Lan, X. Deng, Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw, Biochem. Eng. J., 130 (2018) 104–112.
  5. Y. Xiang, Z. Xu, Y. Wei, Y. Zhou, X. Yang, Y. Yang, J. Yang, J. Zhang, L. Luo, Z. Zhou, Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors, J. Environ. Manage., 237 (2019) 128–138.
  6. F.F. Liu, J. Zhao, S. Wang, B. Xing, Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter, Environ. Pollut., 210 (2016) 85–93.
  7. F. Lian, B. Sun, X. Chen, L. Zhu, Z. Liu, B. Xing, Effect of humic acid (HA) on sulfonamide sorption by biochars, Environ. Pollut., 204 (2015) 306–312.
  8. X. Qin, P. Du, J. Chen, F. Liu, G. Wang, L. Weng, Effects of natural organic matter with different properties on levofloxacin adsorption to goethite: experiments and modeling, Chem. Eng. J., 345 (2018) 425–431.
  9. P. Prarat, P. Hongsawat, P. Punyapalakul, Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: adsorption performance, effects of coexisting ions, and natural organic matter, Environ. Sci. Pollut. Res. Int., 27 (2020) 6560–6576.
  10. G. Ersan, G.A. Onur, F. Perreault, T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: a review, Water Res., 126 (2017) 385–398.
  11. H. Rasoulzadeh, A.M. Bandpei, M. Hosseini, M. Safari, Mechanistic investigation of ciprofloxacin recovery by magnetite–imprinted chitosan nanocomposite: isotherm, kinetic, thermodynamic and reusability studies, Int. J. Biol. Macromol., 133 (2019) 712–721.
  12. Y. Sun, Y. Yang, M. Yang, F. Yu, J. Ma, Response surface methodological evaluation and optimization for adsorption removal of ciprofloxacin onto graphene hydrogel, J. Mol. Liq., 284 (2019) 124–130.
  13. S. Karimifard, M.R.A. Moghaddam, Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review, Sci. Total Environ., 640–641 (2018) 772–797.
  14. B. Zhang, X. Han, P. Gu, S. Fang, J. Bai, Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk, J. Mol. Liq., 238 (2017) 316–325.
  15. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  16. B. Yan, C.H. Niu, Adsorption behavior of norfloxacin and site energy distribution based on the Dubinin-Astakhov isotherm, Sci. Total Environ., 631–632 (2018) 1525–1533.
  17. H. Ghouas, B. Haddou, M. Kameche, J.P. Canselier, C. Gourdon, Removal of tannic acid from aqueous solution by cloud point extraction and investigation of surfactant regeneration by microemulsion extraction, J. Surfactants Deterg., 19 (2016) 57–66.
  18. N. Yadav, B. Lochab, A comparative study of graphene oxide: Hummers, intermediate and improved method, FlatChem, 13 (2019) 40–49.
  19. M. Aazza, H. Ahlafi, H. Moussout, H. Maghat, Ortho-nitrophenol adsorption onto alumina and surfactant modified alumina: kinetic, isotherm and mechanism, J. Environ. Chem. Eng., 5 (2017) 3418–3428.
  20. A. Gunay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  21. Z. Zhang, H.C. Schniepp, D.H. Adamson, Characterization of graphene oxide: variations in reported approaches, Carbon, 154 (2019) 510–521.
  22. S. Sakulpaisan, T. Vongsetskul, S. Reamouppaturm, J. Luangkachao, J. Tantirungrotechai, P. Tangboriboonrat, Titaniafunctionalized graphene oxide for an efficient adsorptive removal of phosphate ions, J. Environ. Manage., 167 (2016) 99–104.
  23. N. Ninwiwek, P. Hongsawat, P. Punyapalakul, P. Prarat, Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: adsorption characteristics, coadsorption and uptake mechanism, Colloids Surf. A, 580 (2019) 123716.
  24. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, The unusual infrared-absorption mechanism in thermally reduced graphene oxide, Nat. Mater., 9 (2010) 840–845.
  25. J. Shen, G. Huang, C. An, X. Xin, C. Huang, S. Rosendahl, Removal of tetrabromobisphenol A by adsorption on pineconederived activated charcoals: Synchrotron FTIR, kinetics and surface functionality analyses, Bioresour. Technol., 247 (2018) 812–820.
  26. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  27. S.A. Thayyath, D. Peethambaran, N. Jayachandran, Utilization of polypyrrole coated iron-doped titania based hydrogel for the removal of tetracycline hydrochloride from aqueous solutions: adsorption and photocatalytic degradation studies, Environ. Nanotechnol. Monit. Manage., 4 (2015) 106–117.
  28. A.B. Perez-Marin, V.M. Zapata, J.F. Ortuno, M. Aguilar, J. Saez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard. Mater., 139 (2007) 122–131.
  29. Y. Keren, M. Borisover, N. Bukhanovsky, Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater, Chemosphere, 138 (2015) 462–468.
  30. L. Fang, Y. Miao, D. Wei, Y. Zhang, Y. Zhou, Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer, Chemosphere, 262 (2021) 128032.
  31. X. Fang, S. Wu, Y. Wu, W. Yang, Y. Li, J. He, P. Hong, M. Nie, C. Xie, Z. Wu, K. Zhang, L. Kong, J. Liu, High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms, Appl. Surf. Sci., 518 (2020) 146226.
  32. G. Peng, M. Zhang, S. Deng, D. Shan, Q. He, G. Yu, Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite, Chem. Eng. J., 341 (2018) 361–370.
  33. X. Zhang, J. Shen, N. Zhuo, Z. Tian, P. Xu, Z. Yang, W. Yang, Interactions between antibiotics and graphene-based materials in water: a comparative experimental and theoretical investigation, ACS Appl. Mater. Interfaces, 8 (2016) 24273–24280.
  34. H. Rasoulzadeh, M.H. Dehghani, Rasoulzadeh, A.S. Mohammadi, R.R. Karri, R. Nabizadeh, S. Nazmara, K.H. Kim, J.N. Sahu, Parametric modelling of Pb(II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework, J. Mol. Liq., 297 (2020) 111893.
  35. H. Soleimanzadeh, A. Niaei, D. Salari, A. Tarjomannejad, S. Penner, M. Grünbacher, S.A. Hosseini, M.S. Mousavi, Modeling and optimization of V2O5/TiO2 nanocatalysts for NH3-selective catalytic reduction (SCR) of NOx by RSM and ANN techniques, J. Environ. Manage., 238 (2019) 360–367.
  36. J.F. Hair, G.T.M. Hult, C.M. Ringle, M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, Thousand Oaks, 2017, p. 224.
  37. I. Levchuk, J.J. Rueda Marquez, M. Sillanpaa, Removal of natural organic matter (NOM) from water by ion exchange: a review, Chemosphere, 192 (2018) 90–104.
  38. W. Yang, Y. Lu, F. Zheng, X. Xue, N. Li, D. Liu, Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube, Chem. Eng. J., 179 (2012) 112–118.
  39. X. Wang, R. Yin, L. Zeng, M. Zhu, A review of graphenebased nanomaterials for removal of antibiotics from aqueous environments, Environ. Pollut., 253 (2019) 100–110.
  40. K. Sun, S. Dong, Y. Sun, B. Gao, W. Du, H. Xu, J. Wu, Graphene oxide-facilitated transport of levofloxacin and ciprofloxacin in saturated and unsaturated porous media, J. Hazard. Mater., 348 (2018) 92–99.
  41. N. Yao, X. Zhang, Z. Yang, W. Yang, Z. Tian, L. Zhang, Norfloxacin and Bisphenol-A removal using temperatureswitchable graphene oxide, ACS Appl. Mater. Interfaces, 10 (2018) 29083–29091.
  42. Z. Wang, X. Yu, B. Pan, B. Xing, Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes, Environ. Sci. Technol., 44 (2010) 978–984.
  43. Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloid Surf. A, 424 (2013) 74–80.
  44. W. Konicki, M. Aleksandrzak, D. Moszynski, E. Mijowska, Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies, J. Colloid Interface Sci., 496 (2017) 188–200.
  45. X. Wu, M. Huang, T. Zhou, J. Mao, Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/ γ-Fe2O3 composites: selective adsorption mechanisms, practical application and regeneration, Sep. Purif. Technol., 165 (2016) 92–100.
  46. R. Rostamian, H. Behnejad, A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets, Ecotoxicol. Environ. Saf., 147 (2018) 117–123.
  47. S. Dong, Y. Sun, J. Wu, B. Wu, A.E. Creamer, B. Gao, Graphene oxide as filter media to remove levofloxacin and lead from aqueous solution, Chemosphere, 150 (2016) 759–764.
  48. H. Chen, G. Bin, L. Hui, Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide, J. Hazard. Mater., 282 (2015) 201–207.
  49. H. Peng, S. Feng, X. Zhang, Y. Li, X. Zhang, Adsorption of norfloxacin onto titanium oxide: effect of drug carrier and dissolved humic acid, Sci. Total Environ., 438 (2012) 66–71.