References

  1. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261 (2010) 3–18.
  2. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  3. W.Y. Teoh, R. Amal, L. Madler, S.E. Pratsnis, TiO2 nanotube deposited in the pores of expanded graphite by microwave irradiation, Catal. Today, 120 (2007) 203–213.
  4. W.Y. Choi, Pure and modified TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia, 10 (2006) 16–28.
  5. J.H. Pan, X.W. Zhang, A.J.H. Du, D.D. Sun, J.O. Leckie, Selfetching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications, J. Am. Chem. Soc., 130 (2008) 11256–11257.
  6. G. Veréb, L. Manczinger, A. Oszkó, A. Sienkiewicz, L. Forró, K. Mogyorósi, A. Dombi, K. Hernádi, Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2, Appl. Catal., B, 129 (2013) 194–201.
  7. K.L. Lv, B. Cheng, J.G. Yu, G. Liu, Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity, Phys. Chem. Chem. Phys., 14 (2012) 5349–5362.
  8. H.M. Zhang, X. Quan, S. Chen, H.M. Zhao, Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability, Environ. Sci. Technol., 40 (2006) 6104–6109.
  9. P. Vijayan, C. Mahendiran, C. Suresh, K. Shanthi, Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol, Catal. Today, 141 (2009) 220–224.
  10. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol, J. Hazard. Mater., 252 (2013) 233–242.
  11. Y.M. Cho, W.Y. Choi, C.-H. Lee, T.W. Hyeon, H.-I. Lee, Visible light-induced degradation of carbon tetrachloride on dyesensitized TiO2, Environ. Sci. Technol., 35 (2001) 966–970.
  12. Y. Xie, S.H. Heo, Y.N. Kim, S.H. Yoo, S.O. Cho, Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires, Nanotechnology, 21 (2010) 015703.
  13. A. Di Paola, L. Palmisano, A.M. Venezia, V. Augugliaro, Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders, J. Phys. Chem. B, 103 (1999) 8236–8244.
  14. Y.H. Ao, J.J. Xu, D.G. Fu, C.W. Yuan, A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light, J. Hazard. Mater., 167 (2009) 413–417.
  15. Y. Wang, Y. Wang, Y.L. Meng, H.M. Ding, Y.K. Shan, X. Zhao, X.Z. Tang, A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2, J. Phys. Chem. C, 112 (2008) 6620–6626.
  16. B. Malinowska, J. Walendziewski, D. Robert, J.W. Weber, M. Stolarski, The study of photocatalytic activities of titania and titania–silica aerogels, Appl. Catal., B, 46 (2003) 441–451.
  17. S.K. Poznyak, D.V. Talapin, A.I. Kulak, Structural, optical and photoelectrochemical properties of nanocrystalline TiO2−In2O3 composite solids and films prepared by sol–gel method, J. Phys. Chem. B, 105 (2001) 4816–4823.
  18. Y. Cao, X.T. Zhang, W.S. Yang, H. Du, Y.B. Bai, T.J. Li, J.N. Yao, A bicomponent TiO2/SnO2 particulate film for photocatalysis, Chem. Mater., 12 (2000) 3445–3448.
  19. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Selfassembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase, J. Phys. Chem. C, 112 (2008) 6258–6262.
  20. B.M. Reddy, A. Khan, Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports, Catal. Rev. Sci. Eng., 47 (2005) 257–296.
  21. B.F. Gao, T.M. Lim, D.P. Subagio, T.-T. Lim, Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A, Appl. Catal., A, 375 (2010) 107–115.
  22. H.J. Liu, G.G. Liu, Q.X. Zhou, Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity, J. Solid State Chem., 182 (2009) 3238–3242.
  23. P. Goswami, J.N. Ganguli, Tuning the bandgap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos, Dalton Trans., 42 (2013) 14480–14490.
  24. L. Kumaresan, A. Prabhu, M. Palanichamy, E. Arumugam, V. Murugesan, Synthesis and characterization of Zr4+, La3+ and Ce3+ doped mesoporous TiO2: evaluation of their photocatalytic activity, J. Hazard. Mater., 186 (2011) 1183–1192.
  25. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, V. Murugesan, Visible-light active mesoporous Ce incorporated TiO2 for the degradation of 4-chlorophenol in aqueous solution, J. Nanosci. Nanotechnol., 13 (2013) 2573–2581.
  26. G.S. Li, D.Q. Zhang, J.C. Yu, Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts, Phys. Chem. Chem. Phys., 11 (2009) 3775–3782.
  27. N. Zhao, M.-M. Yao, F. Li, F.-P. Lou, Microstructures and photocatalytic properties of Ag+ and La3+ surface codoped TiO2 films prepared by sol–gel method, J. Solid State Chem., 184 (2011) 2770–2775.
  28. X. Yang, F.Y. Ma, K.X. Li, Y.N. Guo, J.L. Hu, W. Li, M.X. Huo, Y.H. Guo, Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation, J. Hazard. Mater., 175 (2010) 429–438.
  29. Z.-P. Liu, S.J. Jenkins, D.A. King, Role of nanostructured dualoxide supports in enhanced catalytic activity: theory of CO oxidation over Au/IrO2/TiO2, Phys. Rev. Lett., 93 (2004) 156102, doi: 10.1103/PhysRevLett.93.156102.
  30. X. Zhang, Q.Q. Liu, Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel, Appl. Surf. Sci., 254 (2008) 4780–4785.
  31. M. Myilsamy, M. Mahalakshmi, V. Murugesan, N. Subha, Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2,4-dinitrophenol under visible light, Appl. Surf. Sci., 342 (2015) 1–10.
  32. G.D. Yang, Z.F. Yan, T.C. Xiao, Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity, Appl. Surf. Sci., 258 (2012) 8704–8712.
  33. P. Zhang, Y.L. Yu, E.J. Wang, J.S. Wang, J.H. Yao, Y. Cao, Structure of nitrogen and zirconium co-doped titania with enhanced visible-light photocatalytic activity, ACS Appl. Mater. Interfaces, 6 (2014) 4622–4629.
  34. L. Kumaresan, A. Prabhu, M. Palanichamy, V. Murugesan, Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity, Mater. Chem. Phys., 126 (2011) 445–452.
  35. S.P. Tandon, J.P. Gupta, Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique, Phys. Status Solidi B, 38 (1970) 363–367.
  36. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, MN, 1992.
  37. H.M. Yadav, T.V. Kolekar, S.H. Pawar, J.-S. Kim, Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light, J. Mater. Sci.: Mater. Med., 27 (2016) 57, https://doi.org/10.1007/s10856-016-5675-8.
  38. H.M. Yadav, S.V. Otari, R.A. Bohara, S.S. Mali, S.H. Pawar, S.D. Delekar, Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against gram-positive and gram-negative bacteria, J. Photochem. Photobiol., A, 294 (2014) 130–136.
  39. H.M. Yadav, S.V. Otari, V.B. Koli, S.S. Mali, C.K. Hong, S.H. Pawar, S.D. Delekar, Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity, J. Photochem. Photobiol., A, 280 (2014) 32–38.
  40. Y.-H. Xu, H.-R. Chen, Z.-X. Zeng, B. Lei, Investigation on mechanism of photocatalytic activity enhancement of nanometer cerium-doped titania, Appl. Surf. Sci., 252 (2006) 8565–8570.
  41. Y.-L. Kuo, C. Lee, Y.-S. Chen, H. Liang, Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering, Solid State Ionics, 180 (2009) 1421–1428.
  42. E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz), Surf. Interface Anal., 40 (2008) 264–267.
  43. C. Karunakaran, P. Gomathisankar, G. Manikandan, Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide, Mater. Chem. Phys., 123 (2010) 585–594.
  44. M. Myilsamy, V. Murugesan, M. Mahalakshmi, Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity, Appl. Catal., A, 492 (2015) 212–222.
  45. Y.F. Zhu, L. Zhang, C. Gao, L. Cao, The synthesis of nanosized TiO2 powder using a sol–gel method with TiCl4 as a precursor, J. Mater. Sci., 35 (2000) 4049–4054.
  46. M.H. Li, S.J. Zhang, L. Lv, M.S. Wang, W.M. Zhang, B.C. Pan, A thermally stable mesoporous ZrO2–CeO2–TiO2 visible light photocatalyst, Chem. Eng. J., 229 (2013) 118–125.
  47. G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue, Indian J. Chem., 48 (2009) 480–488.