References
- S.V. Bhat, S.C. Booth, E.A.N. Vantomme, S. Afroj,
C.K. Yost, T.E.S. Dahms, Oxidative stress and metabolic
perturbations in Escherichia coli exposed to sublethal levels
of 2,4-dichlorophenoxyacetic acid, Chemosphere, 135 (2015)
453–461.
- A. Romero-Natale, G. Rebollar-Pérez, I. Ortiz, M.G. Tenorio-
Arvide, R. Munguía-Pérez, I. Palchetti, E. Torres, A simple
spectroscopic method to determine dimethoate in water
samples by complex formation, J. Environ. Sci. Health., Part B,
55 (2020) 310–318.
- A.H. Smith, E.O. Lingas, M. Rahman, Contamination of
drinking-water by arsenic in Bangladesh: a public health
emergency, Bull. World Health Organ., 78 (2000) 1093–1103.
- M. Golshan, B. Kakavandi, M. Ahmadi, M. Azizi, Photocatalytic
activation of peroxymonosulfate by TiO2 anchored on cupper
ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process
feasibility, mechanism and pathway, J. Hazard. Mater.,
359 (2018) 325–337.
- N. Orooji, A. Takdastan, R.J. Yengejeh, S. Jorfi, A.H. Davami,
Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid
using Fe3O4@TiO2/Cu2O magnetic nanocomposite stabilized on
granular activated carbon from aqueous solution, Res. Chem.
Intermed., 46 (2020) 2833–2857.
- J.J. Liu, M. Jiang, G. Li, L. Xu, M.J. Xie, Miniaturized saltingout
liquid–liquid extraction of sulfonamides from different
matrices, Anal. Chim. Acta, 679 (2010) 74–80.
- D.M. Han, W.P. Jia, H.D. Liang, Selective removal of
2,4-dichlorophenoxyacetic acid from water by molecularlyimprinted
amino-functionalized silica gel sorbent, Int.
J. Environ. Sci., 22 (2010) 237–241.
- X.S. Bian, J.Q. Chen, R. Ji, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic
material of tourmaline-coated TiO2 nanoparticles: kinetic study
and model, Materials (Basel), 6 (2013) 1530–1542.
- X.L. Liu, P. Lv, G.X. Yao, C.C. Ma, Y.F. Tang, Y.T. Wu, P.W.
Huo, J.M. Pan, W.D. Shi, Y.S. Yan, Selective degradation of
ciprofloxacin with modified NaCl/TiO2 photocatalyst by
surface molecular imprinted technology, Colloids Surf., A,
441 (2014) 420–426.
- B. Kordestani, R.J. Yengejeh, A. Takdastan, A.B. Neisi, A new
study on photocatalytic degradation of meropenem and
ceftriaxone antibiotics based on sulfate radicals: Influential
factors, biodegradability, mineralization approach, Microchem.
J., 146 (2019) 286–292.
- Y.Z. Hong, A. Ren, Y.H. Jiang, J.H. He, L.S. Xiao, W.D. Shi,
Sol–gel synthesis of visible-light-driven Ni(1−x)Cu(x)Fe2O4
photocatalysts for degradation of tetracycline, Ceram. Int.,
41 (2015) 1477–1486.
- X.N. Liu, Y.H. Tang, S.L. Luo, Y. Wang, X.L. Zhang, Y. Chen,
C.B. Liu, Reduced graphene oxide and CuInS2 co-decorated
TiO2 nanotube arrays for efficient removal of herbicide
2,4-dichlorophenoxyacetic acid from water, J. Photochem.
Photobiol., A, 262 (2013) 22–27.
- K. Del Ángel-Sanchez, O. Vázquez-Cuchillo, A. Aguilar-Elguezabal, A. Cruz-López, A. Herrera-Gómez, Photocatalytic
degradation of 2,4-dichlorophenoxyacetic acid under visible
light: effect of synthesis route, Mater. Chem. Phys., 139 (2013)
423–430.
- S. Nasseri, M. Dehghani, S. Amin, K. Naddafi, Z. Zamanian,
Fate of atrazine in the agricultural soil of corn fields in
Fars province of Iran, J. Environ. Health Sci. Eng., 6 (2009)
223–232.
- J. Sherma, Pesticide residue analysis (1999–2000): a review,
J. AOAC Int., 84 (2001) 1303–1312.
- T. Gezahegn, B. Tegegne, F. Zewge, B.S. Chandravanshi, Saltingout
assisted liquid–liquid extraction for the determination of
ciprofloxacin residues in water samples by high-performance
liquid chromatography-diode array detector, BMC Chem.,
13 (2019) 28, https://doi.org/10.1186/s13065-019-0543-5.
- M.E.T. Padrón, C. Afonso-Olivares, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, Microextraction techniques coupled to liquid
chromatography with mass spectrometry for the determination
of organic micropollutants in environmental water samples,
Molecules, 19 (2014) 10320–10349.
- M.I. Pinto, G. Sontag, R.J. Bernardino, J.P. Noronha, Pesticides in
water and the performance of the liquid-phase microextraction
based techniques, Microchem J., 96 (2010) 225–237.
- A. Asfaram, M. Ghaedi, A. Goudarzi, M. Soylak, Comparison between
dispersive liquid–liquid microextraction and ultrasoundassisted
nanoparticles-dispersive solid-phase microextraction
combined with microvolume spectrophotometry method for
the determination of Auramine-O in water samples, RSC Adv.,
5 (2015) 39084–39096.
- H.Y. Yan, J.J. Du, X.G. Zhang, G.L. Yang, K.H. Row, Y.K. Lv,
Ultrasound-assisted dispersive liquid–liquid microextraction
coupled with capillary gas chromatography for simultaneous
analysis of nine pyrethroids in domestic wastewaters, J. Sep.
Sci., 33 (2010) 1829–1835.
- Y.L. Liu, Y.H. He, Y.L. Jin, Y.Y. Huang, G.Q. Liu, R. Zhao,
Preparation of monodispersed macroporous core–shell
molecularly imprinted particles and their application in the
determination of 2,4-dichlorophenoxyacetic acid, J. Chromatogr.
A, 1323 (2014) 11–17.
- X.F. Liu, Q.F. Zhu, H.X. Chen, L.Z. Zhou, X.P. Dang, J.L. Huang,
Preparation of 2,4-dichlorophenoxyacetic acid imprinted
organic–inorganic hybrid monolithic column and application
to selective solid-phase microextraction, J. Chromatogr. B,
951 (2014) 32–37.
- J.J. Jiménez, Simultaneous liquid–liquid extraction and
dispersive solid-phase extraction as a sample preparation
method to determine acidic contaminants in river water by
gas chromatography/mass spectrometry, Talanta, 116 (2013)
678–687.
- L.F. Huang, M. He, B.B. Chen, B. Hu, Membrane-supported
liquid–liquid–liquid microextraction combined with anionselective
exhaustive injection capillary electrophoresisultraviolet
detection for sensitive analysis of phytohormones,
J. Chromatogr. A, 1343 (2014) 10–17.
- Y.Y. Wen, C.W. Yu, J. Zhang, C.Q. Zhu, X.S. Li, T.L. Zhang,
Z.L. Niu, Determination of 2,4-D in water samples by saltingout
assisted liquid–liquid extraction-UV-vis, Int. J. Adv. Res.
Chem. Sci., 2 (2015) 8–13.
- A. Amraei, A. Niazi, M. Alimoradi, M. Hosseini, Simultaneous
spectrophotometric determination of some polycyclic
aromatic hydrocarbons using chemometrics methods after
their preconcentration by salting-out assisted liquid–liquid
extraction, Int. J. Anal. Chem., 6 (2019) 10–18.
- J.J. Liu, M. Jiang, G. Li, L. Xu, M.J. Xie, Miniaturized saltingout
liquid–liquid extraction of sulfonamides from different
matrices, Anal. Chim. Acta., 679 (2010) 74–80.
- M. Wang, Z.W. Cai, L. Xu, Coupling of acetonitrile
deproteinization and salting-out extraction with acetonitrile
stacking in chiral capillary electrophoresis for the determination
of warfarin enantiomers, J. Chromatogr. A, 1218 (2011)
4045–4051.
- F.-J. Zhao, H. Tang, Q.-H. Zhang, J. Yang, A.K. Davey,
J.-P. Wang, Salting-out homogeneous liquid–liquid extraction
approach applied in sample pre-processing for the quantitative
determination of entecavir in human plasma by LC-MS,
J. Chromatogr. B, 881–882 (2012) 119–125.
- G.G. Noche, M.E.F. Laespada, J.L.P. Pavón, B.M. Cordero,
S.M. Lorenzo, In-situ aqueous derivatization and determination
of non-steroidal anti-inflammatory drugs by salting-outassisted
liquid–liquid extraction and gas chromatography–
mass spectrometry, J. Chromatogr. A, 1218 (2011) 6240–6247.
- American Public Health Association (APHA), American Water
Works Association (AWWA), Water Environment Federations
(WEF), Standard Methods for the Examination of Water and
Wastewater, 23rd ed., Washington D.C., 2017.
- J.L. Acero, F.J. Benítez, F.J. Real, M. González, Chlorination
of organophosphorus pesticides in natural waters, J. Hazard.
Mater., 153 (2008) 320–328.
- S.C. Wendelken, Method 515.4 Determination of Chlorinated
Acids in Drinking Water by Liquid–Liquid Microextraction,
Derivatization, and Fast Gas Chromatography with Electron
Capture Detection, DIANE Publishing, 1996.
- Y.Y. Wen, J.H. Li, F.F. Yang, W.W. Zhang,W.R. Li, C.Y. Liao,
L.X. Chen, Salting-out assisted liquid–liquid extraction
with the aid of experimental design for determination of
benzimidazole fungicides in high salinity samples by highperformance
liquid chromatography, Talanta, 106 (2013) 119–126.
- Y. Alemayehu, T. Tolcha, N. Megersa, Salting-out assisted
liquid–liquid extraction combined with HPLC for quantitative
extraction of trace multiclass pesticide residues from
environmental waters, Am. J. Anal. Chem., 8 (2017) 433, doi:
10.4236/ajac.2017.87033.
- L. Dhooghe, K. Mesia, E. Kohtala, L. Tona, L. Pieters,
A.J. Vlietinck, S. Apers, Development and validation of an
HPLC-method for the determination of alkaloids in the stem
bark extract of Nauclea pobeguinii, Talanta, 76 (2008) 462–468.
- D. de Beer, E. Joubert, Development of HPLC method for
Cyclopia subternata phenolic compound analysis and application
to other Cyclopia spp., J. Food Compos. Anal., 23 (2010) 289–297.
- N. Chamkasem, C. Morris, Direct determination of
2,4-dichlorophenoxyacetic acid in soybean and corn by liquid
chromatography/tandem mass spectrometry, J. Regul. Sci.,
4 (2016) 9–18.
- E. Sklivagou, K. Papadopoulou, A. Bakoulis, Determination
of acid herbicides in water by LC/MS/MS, Desal. Water Treat.,
13 (2010) 320–327.
- F.F. Donato, M.L. Martins, J.S. Munaretto, O.D. Prestes,
M.B. Adaime, R. Zanella, Development of a multiresidue
method for pesticide analysis in drinking water by solid phase
extraction and determination by gas and liquid chromatography
with triple quadrupole tandem mass spectrometry, J. Braz.
Chem. Soc., 26 (2015) 2077–2087.