References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  2. C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117 (2017) 6225–6331.
  3. H.J. Yan, Y. Xie, Y.Q. Jiao, A.P. Wu, C.G. Tian, X.M. Zhang, L. Wang, H.G. Fu, Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution, Adv. Mater., 30 (2018) 1704156.
  4. Y.Q. Wu, P. Wang, X.L. Zhu, Q.Q. Zhang, Z.Y. Wang, Y.Y. Liu, G.Z. Zou, Y. Dai, M.H. Whangbo, B.B. Huang, Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution, Adv. Mater., 30 (2018) 1704342.
  5. D.F. Xu, B. Cheng, W.K. Wang, C.J. Jiang, J.G. Yu, Ag2CrO4/G-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity, Appl. Catal. B, 231 (2018) 368–380.
  6. X.B. Zhu, Y. Shan, S.J. Xiong, J.C. Shen, X.L. Wu, Brianyoungite/graphene oxide coordination composites for high-performance Cu2+ adsorption and tunable deep-red photoluminescence, ACS Appl. Mater. Interfaces, 8 (2016) 15848−15854.
  7. B. Han, Y.L. Zhang, L. Zhu, Y. Li, Z.C. Ma, Y.Q. Liu, X.L. Zhang, X.W. Cao, Q.D. Chen, C.W. Qiu, H.B. Sun, Plasmonic-assisted graphene oxide artificial muscles, Adv. Mater., 31 (2019) 1806386.
  8. S. Ruiz, J.A. Tamayo, J.D. Ospina, D.P.N. Porras, M.E.V. Zapata, J.H.M. Hernandez, C.H. Valencia, F. Zuluaga, C.D.G. Tovar, Antimicrobial films based on nanocomposites of chitosan/poly(vinyl alcohol)/graphene oxide for biomedical applications, Biomolecules, 9 (2019) 109.
  9. L.L. Ou, B. Song, H.M. Liang, J. Liu, X.L. Feng, B. Deng, T. Sun, L.Q. Shao, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms, Part. Fibre Toxicol., 13 (2016) 57.
  10. Y. Volkov, J. Mcintyre, A. Prina-Mello, Graphene toxicity as a double-edged sword of risks and exploitable opportunities: a critical analysis of the most recent trends and developments, 2D Mater., 4 (2017) 022001.
  11. X.Y. Yuan, D. Peng, Q.Y. Jing, J.W. Niu, X. Cheng, Z.J. Feng, W. Wu, Green and effective removal of aqueous graphene oxide under UV-light irradiation, Nanomaterials, 8 (2018) 654.
  12. T. Li, C.Z. Zhang, C.Y. Gu, Study on degrading graphene oxide in wastewater under different conditions for developing an efficient and economical degradation method, Environ Technol., 38 (2017) 2999–3006.
  13. Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Coagulation behavior of graphene oxide on nanocrystallined Mg/Al layered double hydroxides: batch experimental and theoretical calculation study, Environ. Sci. Technol., 50 (2016) 3658–3667.
  14. J. Wang, X. Wang, L. Tan, Y. Chen, T. Hayat, J. Hu, A. Alsaedi, B. Ahmad, W. Guo, X. Wang, Performances and mechanisms of Mg/Al and Ca/Al layered double hydroxides for graphene oxide removal from aqueous solution, Chem. Eng. J., 297 (2016) 106–115.
  15. Y. Zou, X. Wang, Z. Chen, W. Yao, Y. Ai, Y. Liu, T. Hayat, A. Alsaedi, N.S. Alharbi, X. Wang, Superior coagulation of graphene oxides on nanoscale layered double hydroxides and layered double oxides, Environ. Pollut., 219 (2016) 107–117.
  16. J. Wang, Y. Li, W. Chen, J. Peng, J. Hu, Z. Chen, T. Wen, S. Lu, Y. Chen, T. Hayat, B. Ahmad, X. Wang, The rapid coagulation of graphene oxide on La-doped layered double hydroxides, Chem. Eng. J., 309 (2017) 445–453.
  17. L. Duan, R.J. Hao, Z. Xu, X.Z. He, A.S. Adeleye, Y. Li, Removal of graphene oxide nanomaterials from aqueous media via coagulation: effects of water chemistry and natural organic matter, Chemosphere, 168 (2017) 1051–1057.
  18. X. Yuan, J. Niu, Y. Lv, Q. Jing, L. Li, Ultrahigh-capacity and fast-rate removal of graphene oxide by calcined MgAl layered double hydroxide, Appl. Clay Sci., 156 (2018) 61–68.
  19. X.Y. Yuan, J.W. Niu, J.J. Zeng, Q.Y. Jing, Cement-induced coagulation of aqueous graphene oxide with ultrahigh capacity and high rate behavior, Nanomaterials, 8 (2018) 574.
  20. Z.X. Gan, X.L. Wu, M. Meng, X.B. Zhu, L. Yang, P.K. Chu, Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites, ACS Nano, 8 (2014) 9304–9310.
  21. Y. Shen, Q.L. Fang, B.L. Chen, Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection, Environ. Sci. Technol., 49 (2015) 67–84.
  22. Y.Y. Liu, W. Jin, Y.P. Zhao, G.S. Zhang, W. Zhang, Enhanced catalytic degradation of Methylene Blue by Alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Appl. Catal. B, 206 (2017) 642–652.
  23. N. Liu, W.Y. Huang, X.D. Zhang, L. Tang, L. Wang, Y.X. Wang, M.H. Wu, Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB, Appl. Catal. B, 221 (2018) 119–128.
  24. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of hazardous dyes-BR 12 and Methyl Orange using graphene oxide as an adsorbent from aqueous phase, Chem. Eng. J., 284 (2016) 687–697.
  25. S.T. Yang, S. Chen, Y.L. Chang, A.N. Cao, Y.F. Liu, H.F. Wang, Removal of Methylene Blue from aqueous solution by graphene oxide, J. Colloid Interface Sci., 359 (2011) 24–29.
  26. K.P. Liu, H.M. Li, Y.M. Wang, X.J. Gou, Y.X. Duan, Adsorption and removal of Rhodamine B from aqueous solution by tannic acid functionalized graphene, Colloids Surf. A, 477 (2015) 35–41.
  27. A. Ghanadzadeh, A. Zeini, A. Kashef, M. Moghadam, Concentration effect on the absorption spectra of Oxazine1 and Methylene Blue in aqueous and alcoholic solutions, J. Mol. Liq., 138 (2008) 100–106.
  28. T. Szabó, E. Tombácz, E. Illés, I. Dékány, Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides, Carbon, 44 (2006) 537–545.