References

  1. Z. Rui, Research on Near-Zero Discharge Technology of High Saline Wastewater, Chongqing Jiaotong University, 2016.
  2. W.X. Rong, Application of mechanical heat pump technology in a concentrated brine, Chlor-Alkali Ind., 50 (2014) 11–13.
  3. F. Al-Juwayhe, Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps, Desalination, 114 (1997) 235–275.
  4. B.W. Tleimat, Water recovery from and volume reduction of gray water using an energy-efficient evaporator, Desalination, 107 (1996) 111–119.
  5. M. Reig, S. Casas, C. Aladjem, C. Valderrama, O. Gibert, F. Valero, C.M. Centeno, E. Larrotcha, J.L. Cortina, Concentration of NaCl from seawater reverse osmosis brines for the Chloralkali industry by electrodialysis, Desalination, 342 (2014) 107–117.
  6. M. Sadrzadeh, T. Mohammadi, Sea water desalination using electrodialysis, Desalination, 221 (2008) 440–447.
  7. B. Wei, J. Feng, C. Chen, S. Zhong, S. Liao, Y. Yu, X. Li, Highly permselective tadpole-type ionic anion exchange membranes for electrodialysis desalination, J. Membr. Sci., 600 (2020) 600, doi: 10.1016/j.memsci.2020.117861.
  8. M.A. Masigol, A. Moheb, A. Mehrabani-Zeinabad, Comprehensive study on interactive effects of operational parameters by using response surface method for sodium sulfate removal from magnesium stearate aqueous slurry via electrodialysis process, Desal. Water Treat., 57 (2016) 14145–14157.
  9. F.S. Eberhard, I. Hamawand, Selective electrodialysis for copper removal from brackish water and coal seam gas water, Int. J. Environ. Res., 11 (2017) 1–11.
  10. G. Lee, Effects of operating parameters on the removal performance of electrodialysis for treating wastewater containing cadmium, Desal. Water Treat., 35 (2011) 150–157.
  11. Z. Wei, Study on Comprehensive Utilization of Thick Seawater by Electrodialysis and Bipolar Membrane Electrodialysis, Zhejiang University of Technology, 2017.
  12. M. Kazemimoghadam, New nanopore zeolite membranes for water treatment, Desalination, 251 (2010) 176–180.
  13. Y. Zhang, K. Ghyselbrecht, B. Meesschaert, L. Pinoy, B. Van der Bruggen, Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation, J. Membr. Sci., 378 (2011) 101–110.
  14. Y. Zhang, K. Ghyselbrecht, R. Vanherpe, B. Meesschaert, L. Pinoy, B. Van der Bruggen, RO concentrate minimization by electrodialysis: techno-economic analysis and environmental concerns, J. Environ. Mange., 107 (2012) 28–36.
  15. J. Yang, C. Zhang, Z. Zhang, L. Yang, Electroplating wastewater concentration system utilizing mechanical vapor recompression, J. Environ. Eng., 7 (2018) 144.
  16. R.A. Tufa, J. Hnát, M. Němeček, R. Kodým, E. Curcio, K. Bouzek, Hydrogen production from industrial wastewaters: an integrated reverse electrodialysis – water electrolysis energy system, J. Cleaner Prod., 203 (2018) 418–426.
  17. V. Nikonenko, N.D. Pismenskaya, E.I. Belova, P. Sistat, P. Huguet, G. Pourcelly, C. Larchet, Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis, Adv. Colloid. Interface Sci., 160 (2010) 101–123.
  18. D. Han, C. Yue, W.F. He, L. Liang, W.H. Pu, Energy saving analysis for a solution evaporation system with high boiling point elevation based on self-heat recuperation theory, Desalination, 355 (2015) 197–203.
  19. Y.C. Zhang, M.T. Munir, I. Udugama, W. Yu, B.R. Young, Modelling of a milk powder falling film evaporator for predicting process trends and comparison of energy consumption, J. Food Eng., 225 (2018) 26–33.
  20. J. Lu, Y.F. Ma, Y.R. Liu, M.H. Li, Treatment of hypersaline wastewater by a combined neutralization-precipitation with ABR-SBR technique, Desalination, 277 (2011) 321–324.
  21. T. Scarazzato, Z. Panossian, J.A.S. Tenorio, V. Perez-Herranz, D.C.R. Espinosa, A review of cleaner production in electroplating industries using electrodialysis, J. Cleaner Prod., 168 (2017) 1590–1602.
  22. G.L. Lv, J.X. Su, L. Zhang, Q. Li, L. Xu, L.N. Zhao, Analysis of critical process optimization in the black liquor gasification system, J. Renewable Sustainable Energy, 5 (2013) 063102, doi: 10.1063/1.4830269.
  23. Y. Kim, D.k. Kim, Y. Amano, K.C. Ng, W. Chun, Performance of single‐and double‐effect operable mechanical vapor recompression desalination system adaptable to variable wind energy, Int. J. Energy Res., 43 (2019) 4606–4612.
  24. H.Y. Yan, Y.M. Wang, L. Wu, M.A. Shehzad, C.X. Jiang, R.Q. Fu, Z.M. Liu, T.W. Xu, Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimization, water transport, and energy consumption, J. Membr. Sci., 570 (2019) 245–257.
  25. C.T. Cui, H. Yin, J. Yang, D.M. Wei, J.S. Sun, C.N. Guo, Selecting suitable energy-saving distillation schemes: making quick decisions, Chem. Eng. Prog., 107 (2016) 138–150.
  26. J. Lu, Y. Zhou, Process Design of Heat Pump Evaporation Technology for Liquid Radioactive Waste Treatment, 2017 25th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, Shanghai, 2017.
  27. M. Turek, K. Mitko, E. Laskowska, M. Chorążewska, K. Piotrowski, A. Jakóbik-Kolon, P. Dydo, Energy consumption and gypsum scaling assessment in a hybrid nanofiltration reverse osmosis‐electrodialysis system, Chem. Eng. Technol., 41 (2018) 392–400.
  28. K.M. Chehayeb, K.G. Nayar, On the merits of using multistage and counterflow electrodialysis for reduced energy consumption, Desalination, 439 (2018) 1–16.
  29. L. Liang, Design and Performance Research of Mechanical Vapor Recompression System for Treating High Concentration Saline Wastewater, Nanjing University of Aeronautics and Astronautics The Graduate School College of Energy and Power Engineering, 2013.
  30. T.T. Yun, Performance testing and energy-saving analysis of MVR system for Chinese traditional medicine concentration, Energy Saving, 35 (2016) 15–18+2.
  31. A.J. Williamson, K. Folens, K.V. Damme, O. Olaoye, T.A. Atia, B. Mees, N.R. Nicomel, F. Verbruggen, J. Spooren, N. Boon, T. Hennebel, G.D. Laing, Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system, Hydrometallurgy, 195 (2020) 7, doi: 10.1016/j.hydromet.2020.105409.
  32. L. Sun, Q. Chen, H. Lu, J. Wang, J. Zhao, P. Li, Electrodialysis with porous membrane for bioproduct separation: technology, features, and progress, Food Res. Int., 137 (2020) 25, doi: 10.1016/j.foodres.2020.109343.
  33. L. Barros, Y.L. Brasil, A.F.R. Silva, L.H. Andrade, M.C.S. Amaral, Potassium recovery from vinasse by integrated electrodialysis – precipitation process: effect of the electrolyte solutions, J. Environ. Chem., 8 (2020) 11, doi: 10.1016/j.jece.2020.104238.
  34. N. Wang, W. Jiang, L. Fang, Cleaning Process Research of MVR High Concentration Salty Wastewater Treatment System, MATEC Web. Conf., 25 (2015) 6, doi: 10.1051/matecconf/20152504008.
  35. L. Y, Q. L, On the damage of impeller and bearing caused by oil cooler failure of MVR steam compressor, Metal Manage., (2020) 81–82.