References
- M. Muste, A. Hauet, I. Fujita, C. Legout, H.C. Ho, Capabilities
of large-scale particle image velocimetry to characterize
shallow free-surface flows, Adv. Water Resour., 70 (2014)
160–171.
- D.S. Kim, B.S. Kang, Building river information system using
electromagnetic river measurement devices, J. Korea Acad. Ind.
Cooper. Soc., 12 (2011) 507–512.
- M. Muste, I. Fujita, A. Hauet, Large-scale particle image
velocimetry for measurements in riverine environments, Water
Resour. Res., 44 (2008) 1–14.
- F. Scarano, Iterative image deformation methods in PIV, Meas.
Sci. Technol., 13 (2002) R1–R19.
- R.J. Adrian, Twenty years of particle image velocimetry,
Exp. Fluids, 39 (2005) 159–169.
- S.A. Kantoush, A.J. Schleiss, T. Sumi, M. Murasaki, LSPIV
implementation for environmental flow in various laboratory
and field cases, J. Hydro-environ. Res., 5 (2011) 263–276.
- R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of
PIV images, Appl. Sci. Res., 49 (1992) 191–215.
- I. Nezu, M. Sanjou, PIV and PTV measurements in hydrosciences
with focus on turbulent open-channel flows, J. Hydroenviron.
Res., 5 (2011) 215–230.
- M. Raffel, C.E. Willert, S.T. Wereley, J. Kompenhans, Particle
Image Velocimetry: A Practical Guide, Springer, New York,
NY, 2013.
- A. Patalano, C.M. García, W. Brevis, T. Bleninger, N. Guillen,
L. Moreno, A. Rodriguez, Recent Advances in Eulerian and
Lagragian Large-Scale Particle Image Velocimetry, Proceedings
of the 36th IAHR World Congress, The Hague, Netherlands,
2015.
- B. Macvicar, A. Hauet, N.E. Bergeron, L. Tougne, I. Ali, Chapter
16: River Monitoring With Ground-Based Videography,
P. Carbonneau, H. Piégay, Eds., Fluvial Remote Sensing for
Science and Management, John Wiley & Sons, Ltd., Hoboken,
NJ, 2012, pp. 367–383.
- C.A. Unsworth, Chapter 3 - Section 3.4: Particle Image
Velocimetry, S.J. Cook, L.E. Clarke, J.M. Nield, Eds.,
Geomorphological Techniques (Online Edition), British Society
for Geomorphology, London, UK, 2015, pp. 1–15.
- C. Di Cristo, Particle Imaging Velocimetry and Its Applications
in Hydraulics: A State-of-the-Art Review, P. Rowinski,
Ed., Experimental Methods in Hydraulic Research, Vol. 1,
Geoplanet: Earth and Planetary Sciences, Springer, Berlin,
Heidelberg, 2010, pp. 49–66.
- Z. Zhang, L. Xu, H. Wang, Review of natural flow tracers for
river surface imaging velocimetry, Adv. Sci. Technol. Water
Resour., 34 (2014) 81–88.
- A. Melling, Tracer particles and seeding for particle image
velocimetry, Meas. Sci. Technol., 8 (1997) 1406–1416.
- I. Fujita, H. Watanabe, R. Tsubaki, Development of a nonintrusive
and efficient flow monitoring technique: the spacetime
image velocimetry (STIV), Int. J. River Basin Manage.,
5 (2007) 105–114.
- K. Yu, S. Kim, D. Kim, Correlation analysis of spatio-temporal
images for estimating two-dimensional flow velocity field in
a rotating flow condition, J. Hydrol., 529 (2015) 1810–1822.
- R.M. Ferreira, Turbulent Flow Hydrodynamics and Sediment
Transport: Laboratory Research With LDA and PIV, P. Rowinski,
Ed., Experimental Methods in Hydraulic Research, Geoplanet:
Earth and Planetary Sciences, Springer, Berlin, Heidelberg,
2011, pp. 67–111.
- N. Sharma, S. Balan, A.A. Naik, Video processing based water
surface velocity measurement using spatial cross correlation
technique, Int. J. Emerging Trends Sci. Technol., 3 (2014)
233–236.
- S. Kim, K. Yu, B. Yoon, I. Bae, B. Yu, Consideration of Far Infrared
Cameras for Measuring Surface Flow Velocity in Night Time,
Proceedings of the 36th IAHR World Congress, International
Association for Hydro-Environment Engineering and Research
(IAHR), The Hague, Netherlands, 2015.
- S. Manfreda, M.F. McCabe, P.E. Miller, R. Lucas, V. Pajuelo
Madrigal, G. Mallinis, J. Müllerová, On the use of unmanned
aerial systems for environmental monitoring, Remote Sens.,
10 (2018)1–28, doi: 10.3390/rs10040641.
- S.F. Dal Sasso, A. Pizarro, C. Samela, L. Mita, S. Manfreda,
Exploring the optimal experimental setup for surface flow
velocity measurements using PTV, Environ. Monit. Assess., 190
(2018) 1–14, doi: 10.1007/s10661-018-6848-3.
- J. Cramer, A Low-Altitude Remote Sensing Approach to
Monitoring Groundwater-Surface Water Interaction Using
Large-Scale Particle Image Velocimetry, Doctoral Dissertation,
State University of New York at Buffalo, Buffalo, New York,
NY, 2018.
- K. Flora, Flood Flow Estimation using Large Scale Particle
Image Velocimetry (LSPIV), Preliminary Investigation Caltrans
Division of Research, Innovation and System Information,
Division of Maintenance, Caltrans, CA, 2017.
- M. Jodeau, A. Hauet, J. Le Coz, Fudaa-LSPIV 1.3.2 User guide,
Version v03, Électricité de France (EDF), National Institute
for Agricultural Research (INRA) and National Research
Institute of Science and Technology for the Environment and
Agriculture IRSTEA, France, 2013.
- R. Le Boursicaud, L. Pénard, A. Hauet, F. Thollet, J. Le Coz,
Gauging extreme floods on YouTube: application of LSPIV
to home movies for the post‐event determination of stream
discharges, Hydrol. Process., 30 (2016) 90–105.
- J. Le Coz, M. Jodeau, A. Hauet, B. Marchand, R. Le Boursicaud,
Image-Based Velocity and Discharge Measurements in Field and
Laboratory River Engineering Studies Using the Free FUDAALSPIV
Software, Proceedings of the International Conference
on Fluvial Hydraulics (RIVER FLOW 2014), Lausanne, 2014,
1961–1967.
- F. Tauro, C. Pagano, P. Phamduy, S. Grimaldi, M. Porfiri, Largescale
particle image velocimetry from an unmanned aerial
vehicle, IEEE ASME Trans. Mechatron., 20 (2015) 3269–3275.
- P. Koutalakis, O. Tzoraki, G. Zaimes, UAVs for hydrologic
scopes: application of a low-cost UAV to estimate surface
water velocity by using three different image-based methods,
Drones, 3 (2019) 1–15.
- M. Detert, V. Weitbrecht, Estimation of flow discharge by an
airborne velocimetry system, Houille Blanche, 1 (2016) 13–17.
- W. Thielicke, E.J. Stamhuis, PIVlab – towards user-friendly,
affordable and accurate digital particle image velocimetry in
MATLAB, J. Open Res. Softw., 2 (2014) e30 1–10, doi: 10.5334/
jors.bl.
- K.A. McLaughlin, P. Lynett, A. Ayça, N. Kalligeris, Mitigation
Strategies for Strong Currents in Harbors, Proceedings of the
National Earthquake Engineering Research Institute Conference,
Anchorage, Alaska, 2014.
- F. Tauro, S. Grimaldi, Ice dices for monitoring stream surface
velocity, J. Hydro-environ. Res., 14 (2017) 143–149.
- W. Brevis, Y. Niño, G.H. Jirka, Integrating cross-correlation
and relaxation algorithms for particle tracking velocimetry,
Exp. Fluids, 50 (2011) 135–147.
- F. Tauro, R. Piscopia, S. Grimaldi, PTV-stream: a simplified
particle tracking velocimetry framework for stream surface
flow monitoring, Catena, 172 (2019) 378–386.
- J. Le Coz, A. Patalano, D. Collins, N.F. Guillén, C.M. García,
G.M. Smart, J. Bind, A. Chiaverini, R. Le Boursicaud, G. Dramais,
I. Braud, Crowdsourced data for flood hydrology: feedback
from recent citizen science projects in Argentina, France and
New Zealand, J. Hydrol., 541 (2016) 766–777.
- S. Manfreda, S.F. Dal Sasso, A. Pizarro, F. Tauro, Chapter 10:
New Insights Offered by UAS for River Monitoring, B.J. Sharma,
Ed., Applications of Small Unmanned Aircraft Systems: Best
Practices and Case Studies, CRC Press, Taylor & Francis Group,
Boca Raton, FL, 2019, pp. 211–235.
- Y. Kim, M. Muste, A. Hauet, W.F. Krajewski, A. Kruger,
A. Bradley, Stream discharge using mobile large-scale particle
image velocimetry: a proof of concept, Water Resour. Res.,
44 (2008), doi: 10.1029/2006WR005441.
- A. Hauet, M. Muste, H.C. Ho, Digital mapping of riverine
waterway hydrodynamic and geomorphic features, Earth
Surf. Processes Landforms, 34 (2009) 242–252.
- B. Wardman, B. Cruey, J. Howard, Case Study: Utilizing
Large Scale Particle Image Velocimetry to Monitor Rural
Streams during High Flow Events, Proceedings of the World
Environmental and Water Resources Congress 2011: Bearing
Knowledge for Sustainability, Palm Springs, CA, 2011, 2398–2405.
- M. Muste, A. Hauet, H.C. Ho, T. Nakato, Quantitative Mapping
of Waterways Characteristics at Bridge Sites, Final Report for
the Iowa Highway Research IHRB TR-569, IIHR—Hydroscience
& Engineering Technical Report No. 470, The University of
Iowa, Iowa City, USA, 2009.
- I. Fujita, R.A. Tsubaki, A Novel Free-Surface Velocity Measurement
Method Using Spatio-Temporal Images, Proceedings
of Hydraulic Measurements and Experimental Methods,
Specialty Conference 2002 (HMEM), American Society of Civil
Engineers, Colorado, USA, 2002.
- I. Fujita, Y. Notoya, K. Tani, S. Tateguchi, Efficient and accurate
estimation of water surface velocity in STIV, Environ. Fluid
Mech., 19 (2019) 1363–1378.
- V. Weitbrecht, S.A. Socolofsky, G.H. Jirka, Experiments on
mass exchange between groin fields and main stream in rivers,
J. Hydraul. Eng., 134 (2008) 173–183.
- V. Weitbrecht, D.G. Seol, E. Negretti, M. Detert, G. Kühn,
G.H. Jirka, PIV measurements in environmental flows: recent
experiences at the Institute for Hydromechanics in Karlsruhe,
J. Hydro-environ. Res., 5 (2011) 231–245.
- A.C. Ashwood, S.V. Hogen, M.A. Rodarte, C.R. Kopplin,
D.J. Rodríguez, E.T. Hurlburt, T.A. Shedd, A multiphase microscale
PIV measurement technique for liquid film velocity
measurements in annular two-phase flow, Int. J. Multiphase
Flow, 68 (2015) 27–39.
- S.A. Kantoush, A.J. Schleiss, Large-scale PIV surface flow
measurements in shallow basins with different geometries,
J. Visualization, 12 (2009) 361–373.
- C. Abiven, P. Vlachos, Comparative Study of Established DPIV
Algorithms for Planar Velocity Measurements, Proceedings of
International Mechanical Engineering Congress and Exposition
(IMECE), American Society of Mechanical Engineers, ASME,
New Orleans, LO, 2002.
- J.B. Carneal, Integration and Validation of Flow Image
Quantification (Flow-IQ) System, Doctoral Dissertation,
Virginia Polytechnic Institute and State University, Virginia,
USA, 2004.
- A.A. Harpold, S. Mostaghimi, P.P. Vlachos, K. Brannan,
T. Dillaha, Stream discharge measurement using a large-scale
particle image velocimetry (LSPIV) prototype, Trans. ASAE,
49 (2006) 1791–1805.
- L. Gui, S.T. Wereley, A correlation-based continuous windowshift
technique to reduce the peak-locking effect in digital
PIV image evaluation, Exp. Fluids, 32 (2002) 506–517.
- F. Tauro, S. Grimaldi, M. Porfiri, A. Petroselli, Fluorescent
particles for non-intrusive surface flow observations, Procedia
Environ. Sci., 19 (2013) 895–903.
- C. Polatel, Large-Scale Roughness Effect on Free-Surface and
Bulk Flow Characteristics in Open-Channel Flows, Doctoral
dissertation, The University of Iowa, Iowa City, USA, 2006.
- S. Shi, Development of a Bootstrap Filter PTV Algorithm and
a Smart PIV Software, Doctoral Dissertation, University of
Liverpool, Liverpool, 2009.
- S. Shi, D. Chen, The development of an automated PIV image
processing software – Smart PIV, Flow Meas. Instrum., 22 (2011)
181–189.
- E. Meselhe, T. Peeva, M. Muste, Large scale particle image
velocimetry for low velocity and shallow water flows,
J. Hydraul. Eng., 130 (2004) 937–940.
- M. Crapper, T. Bruce, C. Gouble, Flow field visualization of
sediment-laden flow using ultrasonic imaging, Dyn. Atmos.
Oceans, 31 (2000) 233–245.
- Y. Yuan, A.R. Horner-Devine, Laboratory investigation of the
impact of lateral spreading on buoyancy flux in a river plume,
J. Phys. Oceanogr., 43 (2013) 2588–2610.
- G. Toming, Development and Characterization of a Hydrodynamic
Test Bed and a Digital Particle Image Velocimetry
System, M.Sc. Thesis, University of Tartu, Tartu, Estonia, 2010.
- K.K. Kuok, P.C. Chiu, Particle image velocimetry for measuring
water flow velocity, Int. J. Geol. Environ. Eng., 17 (2013) 855–861.
- M. SelvaBalan, N. Sharma, S. Kumbhar, G. Deshpande,
C. Kankariya, A.A. Naik, Surface Water Velocity Measurement
Using Video Processing: A Survey, Proceedings of the
International Conference on Electronics and Communication
Systems (ICECS), Institute of Electrical and Electronics
Engineers (IEEE), Coimbatore, Tamil Nadu, India, 2014.
- B. Meunier, B. White, L.D. Corkum, The role of fanning
behavior in water exchange by a nest‐guarding benthic fish
before spawning, Limnol. Oceanogr. Fluids Environ., 3 (2013)
198–209.
- N. Mori, K.A. Chang, Introduction to MPIV, User Reference
Manual, 2003, p. 14. Available at: http://www.oceanwave.jp/softwares/mpiv.
- M. Rueben, D. Cox, R. Holman, S. Shin, J. Stanley, Optical
measurements of tsunami inundation and debris movement
in a large-scale wave basin, J. Waterw. Port Coastal Ocean
Eng., 141 (2015) 04014029 1–14, doi: 10.1061/(ASCE)
WW.1943-5460.0000267.
- D.J. White, W.A. Take, M.D. Bolton, Discussion of “accuracy
of digital image correlation for measuring deformations in
transparent media” by Samer Sadek, Magued G. Iskander,
and Jinyuan Liu, J. Comput. Civ. Eng., 19 (2005) 217–219.
- U. Shavit, R.J. Lowe, J.V. Steinbuck, Intensity capping: a simple
method to improve cross-correlation PIV results, Exp. Fluids,
42 (2007) 225–240.
- Z.J. Taylor, R. Gurka, G.A. Kopp, A. Liberzon, Long-duration
time-resolved PIV to study unsteady aerodynamics, IEEE
Trans. Instrum. Meas., 59 (2010) 3262–3269.
- T.G. Almeida, P.A. Muscarella, A.M. Warnock, Observations
of Surface Velocities in Riverine and Nearshore Environments
Using Small UAV-Based IR Imagery, Proceedings of the AGU
Fall Meeting Abstracts, Washington, DC, District of Columbia,
USA, 2018.
- D. Sivas, A.B. Olcay, H. Ahn, Investigation of a corrugated
channel flow with an open source PIV software, EPJ Web. Conf.,
114 (2016) 02107 1–7, doi: 10.1051/epjconf/201611402107.
- H. Goumnerov, Validation of a Three Dimensional Particle
Tracking Velocimetry Software, M.Sc. Thesis, Texas A&M
University, Texas, USA, 2014.
- Y. Meller, A. Liberzon, Particle data management software for
3D particle tracking velocimetry and related applications – the
flowtracks package, J. Open Res. Softw., 4 (2016), doi: 10.6084/m9.figshare.1572986.
- R.R. De la Torre, M. Kuchta, A. Jensen, 3D Particle Tracking
Velocimetry Applied to Bubble Plumes from a Free Falling Jet,
Proceedings of the 13th International Symposium on Particle
Image Velocimetry – ISPIV 2019, Munich, 2019.
- B. Suri, J. Tithof, R. Mitchell Jr., R.O. Grigoriev, M.F. Schatz,
Velocity profile in a two-layer Kolmogorov-like flow, Phys.
Fluids, 26 (2014) 053601 1–18, doi: 10.1063/1.4873417.
- A. Safarzadeh, W. Brevis, Assessment of 3D-RANS models
for the simulation of topographically forced shallow flows,
J. Hydrol. Hydromech., 64 (2016) 83–90.
- J.E. Higham, W. Brevis, C.J. Keylock, A. Safarzadeh, Using
modal decompositions to explain the sudden expansion of the
mixing layer in the wake of a groyne in a shallow flow, Adv.
Water Resour., 107 (2017) 451–459.
- R. Tsubaki, I. Fujita, K. Yu, M. Muste, Large-Scale Particle
Image Velocimetry (LSPIV) Implementation on Smartphone,
Proceedings of the 36th IAHR World Congress, International
Association for Hydro-Environment Engineering and Research
(IAHR), The Hague, Netherlands, 2015.
- H.M. Tritico, A.J. Cotel, J.N. Clarke, Development, Testing and
Demonstration of a Portable Submersible Miniature Particle
Imaging Velocimetry Device, Meas. Sci. Technol., 18 (2007)
2555–2562, doi: 10.1088/0957-0233/18/8/031.
- B. Lüthi, T. Philippe, S. Pena-Haro, Mobile Device App for
Small Open-Channel Flow Measurement, Proceedings of the
7th International Congress Environmental Modelling and
Software Society (iEMSs), San Diego, CA, 2014, 283–287.
- J.P. Leitão, S. Peña-Haro, B. Lüthi, A. Scheidegger, M.M. de
Vitry, Urban overland runoff velocity measurement with
consumer-grade surveillance cameras and surface structure
image velocimetry, J. Hydrol., 565 (2018) 791–804.
- W.Y. Chang, F. Lin, W.F. Tsai, J.S. Lai, C.H. Loh, S.C. Kang,
Portable particle image velocimetry measurement using a laserbased
technique, J. Hydraul. Eng., 142 (2016) 04016027 1–9,
doi: 10.1061/(ASCE)HY.1943-7900.0001158.
- D.J. White, W.A. Take, GeoPIV: Particle Image Velocimetry
(PIV) Software for Use in Geotechnical Testing, Technical
Report D-SOILS-TR322, Department of Engineering, University
of Cambridge, UK, 2002.
- T.F. Azmatch, L.U. Arenson, D.C. Sego, K.W. Biggar, Measuring
Ice Lens Growth and Development of Soil Strains During
Frost Penetration Using Particle Image Velocimetry (GeoPIV),
Proceedings of the Ninth International Conference on
Permafrost, Vol. 1, Fairbanks, Alaska, 2008, pp. 89–93.
- J. Kaczmarek, D. Lesniewska, A flood enbankment under
changing water level conditions-a comparison of a physical
and a numerical model, Tech. Sci., 13 (2010) 53–63.
- J. Brauneck, T. Gattung, R. Jüpner, Surface Flow Velocity
Measurements from UAV-Based Videos, Proceedings of the
International Archives of the Photogrammetry, Remote Sensing
& Spatial Information Sciences, Enschede, Netherlands, 2019.
- D. Brown, A. Cox, Innovative uses of video analysis, Phys.
Teach., 47 (2009) 145–150.
- R. Camussi, T. Pagliaroli, Aerodynamic and Aeroacoustic
Characterization of Unconventional Trapped Vortex Burners
“Caratterizzazione Aerodinamica e Aeroacustica di Bruciatori
Non Convenzionali di Tipo Trapped Vortex”, Program
Agreement Ministry of Economic Development-ENEA,
Electrical System Research Report RdS/2012/194”, Accordo
di Programma Ministero dello Sviluppo Economico-ENEA,
Report Ricerca di Sistema Elettrico, RdS/2012/194”, Roma, Italy,
2012.
- T. Pagliaroli, R. Camussi, Wall pressure fluctuations in
rectangular partial enclosures, J. Sound Vib., 341 (2015) 116–137.
- D.H. Mohajeri, M. Righetti, G. Wharton, G.P. Romano, On
the structure of turbulent gravel bed flow: implications for
sediment transport, Adv. Water Resour., 92 (2016) 90–104.
- F. Moisy, M. Rabaud, Free-Surface Synthetic Schlieren: A
Tutorial, 2008. Available at: http://www.fast.u-psud.fr/~moisy/
sgbos/tutorial.php (accessed September 23, 2020).
- J. Naves, J. Anta, J. Puertas, M. Regueiro-Picallo, J. Suárez,
Using a 2D shallow water model to assess large-scale particle
image velocimetry (LSPIV) and structure from motion (SfM)
techniques in a street-scale urban drainage physical model,
J. Hydrol., 575 (2019) 54–65.
- B. Bizjan, A. Orbanić, B. Širok, B. Kovač, T. Bajcar, I. Kavkler,
A computer-aided visualization method for flow analysis,
Flow Meas. Instrum., 38 (2015) 1–8.
- G. Novak, G. Rak, T. Prešeren, T. Bajcar, Non-intrusive
measurements of shallow water discharge, Flow Meas.
Instrum., 56 (2017) 14–17.
- A.J. Bechle, C.H. Wu, W.C. Liu, N. Kimura, Development and
application of an automated river-estuary discharge imaging
system, J. Hydraul. Eng., 138 (2012) 327–339.
- A.J. Bechle, C.H. Wu, An entropy‐based surface velocity
method for estuarine discharge measurement, Water Resour.
Res., 50 (2014) 6106–6128.
- K. Iimura, T. Shibayama, T. Takabatake, M. Esteban, H. Ishii,
G. Hamano, Laboratory Study of Tsunami Behavior around
Two Upright Sea Dikes with Different Heights, Proceedings of
the Conference Coastal Structures 2019, Hannover, Germany,
2019, pp. 476–485.
- J.E. Higham, M. Shahnam, A. Vaidheeswaran, On the
Dynamics of a Quasi-Two-Dimensional Pulsed-Fludized Bed,
arXiv:1809.05033, Physics, Fluid Dynamics, Cornell University,
New York, NY, 2018.
- D.C. Dermisis, A.N. Papanicolaou, Determining the 2-D Surface
Velocity Field around Hydraulic Structures With the Use of a
Large Scale Particle Image Velocimetry (LSPIV) Technique,
Proceedings of the World Water and Environmental Resources
Congress 2005: Impacts of Global Climate Change, Anchorage,
Alaska, 2005.
- A. Bayon, D. Valero, R. García-Bartual, P.A. López-Jiménez,
Performance assessment of OpenFOAM and FLOW-3D in the
numerical modeling of a low Reynolds number hydraulic jump,
Environ. Model. Softw., 80 (2016) 322–335.
- M.M. Al-Mamari, S.A. Kantoush, S. Kobayashi, T. Sumi, M.
Saber, Real-time measurement of flash-flood in a Wadi area
by LSPIV and STIV, Hydrology, 6 (2019) 1–13, doi: 10.3390/hydrology6010027.