References

  1. M. Muste, A. Hauet, I. Fujita, C. Legout, H.C. Ho, Capabilities of large-scale particle image velocimetry to characterize shallow free-surface flows, Adv. Water Resour., 70 (2014) 160–171.
  2. D.S. Kim, B.S. Kang, Building river information system using electromagnetic river measurement devices, J. Korea Acad. Ind. Cooper. Soc., 12 (2011) 507–512.
  3. M. Muste, I. Fujita, A. Hauet, Large-scale particle image velocimetry for measurements in riverine environments, Water Resour. Res., 44 (2008) 1–14.
  4. F. Scarano, Iterative image deformation methods in PIV, Meas. Sci. Technol., 13 (2002) R1–R19.
  5. R.J. Adrian, Twenty years of particle image velocimetry, Exp. Fluids, 39 (2005) 159–169.
  6. S.A. Kantoush, A.J. Schleiss, T. Sumi, M. Murasaki, LSPIV implementation for environmental flow in various laboratory and field cases, J. Hydro-environ. Res., 5 (2011) 263–276.
  7. R.D. Keane, R.J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res., 49 (1992) 191–215.
  8. I. Nezu, M. Sanjou, PIV and PTV measurements in hydrosciences with focus on turbulent open-channel flows, J. Hydroenviron. Res., 5 (2011) 215–230.
  9. M. Raffel, C.E. Willert, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer, New York, NY, 2013.
  10. A. Patalano, C.M. García, W. Brevis, T. Bleninger, N. Guillen, L. Moreno, A. Rodriguez, Recent Advances in Eulerian and Lagragian Large-Scale Particle Image Velocimetry, Proceedings of the 36th IAHR World Congress, The Hague, Netherlands, 2015.
  11. B. Macvicar, A. Hauet, N.E. Bergeron, L. Tougne, I. Ali, Chapter 16: River Monitoring With Ground-Based Videography, P. Carbonneau, H. Piégay, Eds., Fluvial Remote Sensing for Science and Management, John Wiley & Sons, Ltd., Hoboken, NJ, 2012, pp. 367–383.
  12. C.A. Unsworth, Chapter 3 - Section 3.4: Particle Image Velocimetry, S.J. Cook, L.E. Clarke, J.M. Nield, Eds., Geomorphological Techniques (Online Edition), British Society for Geomorphology, London, UK, 2015, pp. 1–15.
  13. C. Di Cristo, Particle Imaging Velocimetry and Its Applications in Hydraulics: A State-of-the-Art Review, P. Rowinski, Ed., Experimental Methods in Hydraulic Research, Vol. 1, Geoplanet: Earth and Planetary Sciences, Springer, Berlin, Heidelberg, 2010, pp. 49–66.
  14. Z. Zhang, L. Xu, H. Wang, Review of natural flow tracers for river surface imaging velocimetry, Adv. Sci. Technol. Water Resour., 34 (2014) 81–88.
  15. A. Melling, Tracer particles and seeding for particle image velocimetry, Meas. Sci. Technol., 8 (1997) 1406–1416.
  16. I. Fujita, H. Watanabe, R. Tsubaki, Development of a nonintrusive and efficient flow monitoring technique: the spacetime image velocimetry (STIV), Int. J. River Basin Manage., 5 (2007) 105–114.
  17. K. Yu, S. Kim, D. Kim, Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition, J. Hydrol., 529 (2015) 1810–1822.
  18. R.M. Ferreira, Turbulent Flow Hydrodynamics and Sediment Transport: Laboratory Research With LDA and PIV, P. Rowinski, Ed., Experimental Methods in Hydraulic Research, Geoplanet: Earth and Planetary Sciences, Springer, Berlin, Heidelberg, 2011, pp. 67–111.
  19. N. Sharma, S. Balan, A.A. Naik, Video processing based water surface velocity measurement using spatial cross correlation technique, Int. J. Emerging Trends Sci. Technol., 3 (2014) 233–236.
  20. S. Kim, K. Yu, B. Yoon, I. Bae, B. Yu, Consideration of Far Infrared Cameras for Measuring Surface Flow Velocity in Night Time, Proceedings of the 36th IAHR World Congress, International Association for Hydro-Environment Engineering and Research (IAHR), The Hague, Netherlands, 2015.
  21. S. Manfreda, M.F. McCabe, P.E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, J. Müllerová, On the use of unmanned aerial systems for environmental monitoring, Remote Sens., 10 (2018)1–28, doi: 10.3390/rs10040641.
  22. S.F. Dal Sasso, A. Pizarro, C. Samela, L. Mita, S. Manfreda, Exploring the optimal experimental setup for surface flow velocity measurements using PTV, Environ. Monit. Assess., 190 (2018) 1–14, doi: 10.1007/s10661-018-6848-3.
  23. J. Cramer, A Low-Altitude Remote Sensing Approach to Monitoring Groundwater-Surface Water Interaction Using Large-Scale Particle Image Velocimetry, Doctoral Dissertation, State University of New York at Buffalo, Buffalo, New York, NY, 2018.
  24. K. Flora, Flood Flow Estimation using Large Scale Particle Image Velocimetry (LSPIV), Preliminary Investigation Caltrans Division of Research, Innovation and System Information, Division of Maintenance, Caltrans, CA, 2017.
  25. M. Jodeau, A. Hauet, J. Le Coz, Fudaa-LSPIV 1.3.2 User guide, Version v03, Électricité de France (EDF), National Institute for Agricultural Research (INRA) and National Research Institute of Science and Technology for the Environment and Agriculture IRSTEA, France, 2013.
  26. R. Le Boursicaud, L. Pénard, A. Hauet, F. Thollet, J. Le Coz, Gauging extreme floods on YouTube: application of LSPIV to home movies for the post‐event determination of stream discharges, Hydrol. Process., 30 (2016) 90–105.
  27. J. Le Coz, M. Jodeau, A. Hauet, B. Marchand, R. Le Boursicaud, Image-Based Velocity and Discharge Measurements in Field and Laboratory River Engineering Studies Using the Free FUDAALSPIV Software, Proceedings of the International Conference on Fluvial Hydraulics (RIVER FLOW 2014), Lausanne, 2014, 1961–1967.
  28. F. Tauro, C. Pagano, P. Phamduy, S. Grimaldi, M. Porfiri, Largescale particle image velocimetry from an unmanned aerial vehicle, IEEE ASME Trans. Mechatron., 20 (2015) 3269–3275.
  29. P. Koutalakis, O. Tzoraki, G. Zaimes, UAVs for hydrologic scopes: application of a low-cost UAV to estimate surface water velocity by using three different image-based methods, Drones, 3 (2019) 1–15.
  30. M. Detert, V. Weitbrecht, Estimation of flow discharge by an airborne velocimetry system, Houille Blanche, 1 (2016) 13–17.
  31. W. Thielicke, E.J. Stamhuis, PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB, J. Open Res. Softw., 2 (2014) e30 1–10, doi: 10.5334/ jors.bl.
  32. K.A. McLaughlin, P. Lynett, A. Ayça, N. Kalligeris, Mitigation Strategies for Strong Currents in Harbors, Proceedings of the National Earthquake Engineering Research Institute Conference, Anchorage, Alaska, 2014.
  33. F. Tauro, S. Grimaldi, Ice dices for monitoring stream surface velocity, J. Hydro-environ. Res., 14 (2017) 143–149.
  34. W. Brevis, Y. Niño, G.H. Jirka, Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50 (2011) 135–147.
  35. F. Tauro, R. Piscopia, S. Grimaldi, PTV-stream: a simplified particle tracking velocimetry framework for stream surface flow monitoring, Catena, 172 (2019) 378–386.
  36. J. Le Coz, A. Patalano, D. Collins, N.F. Guillén, C.M. García, G.M. Smart, J. Bind, A. Chiaverini, R. Le Boursicaud, G. Dramais, I. Braud, Crowdsourced data for flood hydrology: feedback from recent citizen science projects in Argentina, France and New Zealand, J. Hydrol., 541 (2016) 766–777.
  37. S. Manfreda, S.F. Dal Sasso, A. Pizarro, F. Tauro, Chapter 10: New Insights Offered by UAS for River Monitoring, B.J. Sharma, Ed., Applications of Small Unmanned Aircraft Systems: Best Practices and Case Studies, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2019, pp. 211–235.
  38. Y. Kim, M. Muste, A. Hauet, W.F. Krajewski, A. Kruger, A. Bradley, Stream discharge using mobile large-scale particle image velocimetry: a proof of concept, Water Resour. Res., 44 (2008), doi: 10.1029/2006WR005441.
  39. A. Hauet, M. Muste, H.C. Ho, Digital mapping of riverine waterway hydrodynamic and geomorphic features, Earth Surf. Processes Landforms, 34 (2009) 242–252.
  40. B. Wardman, B. Cruey, J. Howard, Case Study: Utilizing Large Scale Particle Image Velocimetry to Monitor Rural Streams during High Flow Events, Proceedings of the World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, 2011, 2398–2405.
  41. M. Muste, A. Hauet, H.C. Ho, T. Nakato, Quantitative Mapping of Waterways Characteristics at Bridge Sites, Final Report for the Iowa Highway Research IHRB TR-569, IIHR—Hydroscience & Engineering Technical Report No. 470, The University of Iowa, Iowa City, USA, 2009.
  42. I. Fujita, R.A. Tsubaki, A Novel Free-Surface Velocity Measurement Method Using Spatio-Temporal Images, Proceedings of Hydraulic Measurements and Experimental Methods, Specialty Conference 2002 (HMEM), American Society of Civil Engineers, Colorado, USA, 2002.
  43. I. Fujita, Y. Notoya, K. Tani, S. Tateguchi, Efficient and accurate estimation of water surface velocity in STIV, Environ. Fluid Mech., 19 (2019) 1363–1378.
  44. V. Weitbrecht, S.A. Socolofsky, G.H. Jirka, Experiments on mass exchange between groin fields and main stream in rivers, J. Hydraul. Eng., 134 (2008) 173–183.
  45. V. Weitbrecht, D.G. Seol, E. Negretti, M. Detert, G. Kühn, G.H. Jirka, PIV measurements in environmental flows: recent experiences at the Institute for Hydromechanics in Karlsruhe, J. Hydro-environ. Res., 5 (2011) 231–245.
  46. A.C. Ashwood, S.V. Hogen, M.A. Rodarte, C.R. Kopplin, D.J. Rodríguez, E.T. Hurlburt, T.A. Shedd, A multiphase microscale PIV measurement technique for liquid film velocity measurements in annular two-phase flow, Int. J. Multiphase Flow, 68 (2015) 27–39.
  47. S.A. Kantoush, A.J. Schleiss, Large-scale PIV surface flow measurements in shallow basins with different geometries, J. Visualization, 12 (2009) 361–373.
  48. C. Abiven, P. Vlachos, Comparative Study of Established DPIV Algorithms for Planar Velocity Measurements, Proceedings of International Mechanical Engineering Congress and Exposition (IMECE), American Society of Mechanical Engineers, ASME, New Orleans, LO, 2002.
  49. J.B. Carneal, Integration and Validation of Flow Image Quantification (Flow-IQ) System, Doctoral Dissertation, Virginia Polytechnic Institute and State University, Virginia, USA, 2004.
  50. A.A. Harpold, S. Mostaghimi, P.P. Vlachos, K. Brannan, T. Dillaha, Stream discharge measurement using a large-scale particle image velocimetry (LSPIV) prototype, Trans. ASAE, 49 (2006) 1791–1805.
  51. L. Gui, S.T. Wereley, A correlation-based continuous windowshift technique to reduce the peak-locking effect in digital PIV image evaluation, Exp. Fluids, 32 (2002) 506–517.
  52. F. Tauro, S. Grimaldi, M. Porfiri, A. Petroselli, Fluorescent particles for non-intrusive surface flow observations, Procedia Environ. Sci., 19 (2013) 895–903.
  53. C. Polatel, Large-Scale Roughness Effect on Free-Surface and Bulk Flow Characteristics in Open-Channel Flows, Doctoral dissertation, The University of Iowa, Iowa City, USA, 2006.
  54. S. Shi, Development of a Bootstrap Filter PTV Algorithm and a Smart PIV Software, Doctoral Dissertation, University of Liverpool, Liverpool, 2009.
  55. S. Shi, D. Chen, The development of an automated PIV image processing software – Smart PIV, Flow Meas. Instrum., 22 (2011) 181–189.
  56. E. Meselhe, T. Peeva, M. Muste, Large scale particle image velocimetry for low velocity and shallow water flows, J. Hydraul. Eng., 130 (2004) 937–940.
  57. M. Crapper, T. Bruce, C. Gouble, Flow field visualization of sediment-laden flow using ultrasonic imaging, Dyn. Atmos. Oceans, 31 (2000) 233–245.
  58. Y. Yuan, A.R. Horner-Devine, Laboratory investigation of the impact of lateral spreading on buoyancy flux in a river plume, J. Phys. Oceanogr., 43 (2013) 2588–2610.
  59. G. Toming, Development and Characterization of a Hydrodynamic Test Bed and a Digital Particle Image Velocimetry System, M.Sc. Thesis, University of Tartu, Tartu, Estonia, 2010.
  60. K.K. Kuok, P.C. Chiu, Particle image velocimetry for measuring water flow velocity, Int. J. Geol. Environ. Eng., 17 (2013) 855–861.
  61. M. SelvaBalan, N. Sharma, S. Kumbhar, G. Deshpande, C. Kankariya, A.A. Naik, Surface Water Velocity Measurement Using Video Processing: A Survey, Proceedings of the International Conference on Electronics and Communication Systems (ICECS), Institute of Electrical and Electronics Engineers (IEEE), Coimbatore, Tamil Nadu, India, 2014.
  62. B. Meunier, B. White, L.D. Corkum, The role of fanning behavior in water exchange by a nest‐guarding benthic fish before spawning, Limnol. Oceanogr. Fluids Environ., 3 (2013) 198–209.
  63. N. Mori, K.A. Chang, Introduction to MPIV, User Reference Manual, 2003, p. 14. Available at: http://www.oceanwave.jp/softwares/mpiv.
  64. M. Rueben, D. Cox, R. Holman, S. Shin, J. Stanley, Optical measurements of tsunami inundation and debris movement in a large-scale wave basin, J. Waterw. Port Coastal Ocean Eng., 141 (2015) 04014029 1–14, doi: 10.1061/(ASCE) WW.1943-5460.0000267.
  65. D.J. White, W.A. Take, M.D. Bolton, Discussion of “accuracy of digital image correlation for measuring deformations in transparent media” by Samer Sadek, Magued G. Iskander, and Jinyuan Liu, J. Comput. Civ. Eng., 19 (2005) 217–219.
  66. U. Shavit, R.J. Lowe, J.V. Steinbuck, Intensity capping: a simple method to improve cross-correlation PIV results, Exp. Fluids, 42 (2007) 225–240.
  67. Z.J. Taylor, R. Gurka, G.A. Kopp, A. Liberzon, Long-duration time-resolved PIV to study unsteady aerodynamics, IEEE Trans. Instrum. Meas., 59 (2010) 3262–3269.
  68. T.G. Almeida, P.A. Muscarella, A.M. Warnock, Observations of Surface Velocities in Riverine and Nearshore Environments Using Small UAV-Based IR Imagery, Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, District of Columbia, USA, 2018.
  69. D. Sivas, A.B. Olcay, H. Ahn, Investigation of a corrugated channel flow with an open source PIV software, EPJ Web. Conf., 114 (2016) 02107 1–7, doi: 10.1051/epjconf/201611402107.
  70. H. Goumnerov, Validation of a Three Dimensional Particle Tracking Velocimetry Software, M.Sc. Thesis, Texas A&M University, Texas, USA, 2014.
  71. Y. Meller, A. Liberzon, Particle data management software for 3D particle tracking velocimetry and related applications – the flowtracks package, J. Open Res. Softw., 4 (2016), doi: 10.6084/m9.figshare.1572986.
  72. R.R. De la Torre, M. Kuchta, A. Jensen, 3D Particle Tracking Velocimetry Applied to Bubble Plumes from a Free Falling Jet, Proceedings of the 13th International Symposium on Particle Image Velocimetry – ISPIV 2019, Munich, 2019.
  73. B. Suri, J. Tithof, R. Mitchell Jr., R.O. Grigoriev, M.F. Schatz, Velocity profile in a two-layer Kolmogorov-like flow, Phys. Fluids, 26 (2014) 053601 1–18, doi: 10.1063/1.4873417.
  74. A. Safarzadeh, W. Brevis, Assessment of 3D-RANS models for the simulation of topographically forced shallow flows, J. Hydrol. Hydromech., 64 (2016) 83–90.
  75. J.E. Higham, W. Brevis, C.J. Keylock, A. Safarzadeh, Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow, Adv. Water Resour., 107 (2017) 451–459.
  76. R. Tsubaki, I. Fujita, K. Yu, M. Muste, Large-Scale Particle Image Velocimetry (LSPIV) Implementation on Smartphone, Proceedings of the 36th IAHR World Congress, International Association for Hydro-Environment Engineering and Research (IAHR), The Hague, Netherlands, 2015.
  77. H.M. Tritico, A.J. Cotel, J.N. Clarke, Development, Testing and Demonstration of a Portable Submersible Miniature Particle Imaging Velocimetry Device, Meas. Sci. Technol., 18 (2007) 2555–2562, doi: 10.1088/0957-0233/18/8/031.
  78. B. Lüthi, T. Philippe, S. Pena-Haro, Mobile Device App for Small Open-Channel Flow Measurement, Proceedings of the 7th International Congress Environmental Modelling and Software Society (iEMSs), San Diego, CA, 2014, 283–287.
  79. J.P. Leitão, S. Peña-Haro, B. Lüthi, A. Scheidegger, M.M. de Vitry, Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry, J. Hydrol., 565 (2018) 791–804.
  80. W.Y. Chang, F. Lin, W.F. Tsai, J.S. Lai, C.H. Loh, S.C. Kang, Portable particle image velocimetry measurement using a laserbased technique, J. Hydraul. Eng., 142 (2016) 04016027 1–9, doi: 10.1061/(ASCE)HY.1943-7900.0001158.
  81. D.J. White, W.A. Take, GeoPIV: Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing, Technical Report D-SOILS-TR322, Department of Engineering, University of Cambridge, UK, 2002.
  82. T.F. Azmatch, L.U. Arenson, D.C. Sego, K.W. Biggar, Measuring Ice Lens Growth and Development of Soil Strains During Frost Penetration Using Particle Image Velocimetry (GeoPIV), Proceedings of the Ninth International Conference on Permafrost, Vol. 1, Fairbanks, Alaska, 2008, pp. 89–93.
  83. J. Kaczmarek, D. Lesniewska, A flood enbankment under changing water level conditions-a comparison of a physical and a numerical model, Tech. Sci., 13 (2010) 53–63.
  84. J. Brauneck, T. Gattung, R. Jüpner, Surface Flow Velocity Measurements from UAV-Based Videos, Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Enschede, Netherlands, 2019.
  85. D. Brown, A. Cox, Innovative uses of video analysis, Phys. Teach., 47 (2009) 145–150.
  86. R. Camussi, T. Pagliaroli, Aerodynamic and Aeroacoustic Characterization of Unconventional Trapped Vortex Burners “Caratterizzazione Aerodinamica e Aeroacustica di Bruciatori Non Convenzionali di Tipo Trapped Vortex”, Program Agreement Ministry of Economic Development-ENEA, Electrical System Research Report RdS/2012/194”, Accordo di Programma Ministero dello Sviluppo Economico-ENEA, Report Ricerca di Sistema Elettrico, RdS/2012/194”, Roma, Italy, 2012.
  87. T. Pagliaroli, R. Camussi, Wall pressure fluctuations in rectangular partial enclosures, J. Sound Vib., 341 (2015) 116–137.
  88. D.H. Mohajeri, M. Righetti, G. Wharton, G.P. Romano, On the structure of turbulent gravel bed flow: implications for sediment transport, Adv. Water Resour., 92 (2016) 90–104.
  89. F. Moisy, M. Rabaud, Free-Surface Synthetic Schlieren: A Tutorial, 2008. Available at: http://www.fast.u-psud.fr/~moisy/ sgbos/tutorial.php (accessed September 23, 2020).
  90. J. Naves, J. Anta, J. Puertas, M. Regueiro-Picallo, J. Suárez, Using a 2D shallow water model to assess large-scale particle image velocimetry (LSPIV) and structure from motion (SfM) techniques in a street-scale urban drainage physical model, J. Hydrol., 575 (2019) 54–65.
  91. B. Bizjan, A. Orbanić, B. Širok, B. Kovač, T. Bajcar, I. Kavkler, A computer-aided visualization method for flow analysis, Flow Meas. Instrum., 38 (2015) 1–8.
  92. G. Novak, G. Rak, T. Prešeren, T. Bajcar, Non-intrusive measurements of shallow water discharge, Flow Meas. Instrum., 56 (2017) 14–17.
  93. A.J. Bechle, C.H. Wu, W.C. Liu, N. Kimura, Development and application of an automated river-estuary discharge imaging system, J. Hydraul. Eng., 138 (2012) 327–339.
  94. A.J. Bechle, C.H. Wu, An entropy‐based surface velocity method for estuarine discharge measurement, Water Resour. Res., 50 (2014) 6106–6128.
  95. K. Iimura, T. Shibayama, T. Takabatake, M. Esteban, H. Ishii, G. Hamano, Laboratory Study of Tsunami Behavior around Two Upright Sea Dikes with Different Heights, Proceedings of the Conference Coastal Structures 2019, Hannover, Germany, 2019, pp. 476–485.
  96. J.E. Higham, M. Shahnam, A. Vaidheeswaran, On the Dynamics of a Quasi-Two-Dimensional Pulsed-Fludized Bed, arXiv:1809.05033, Physics, Fluid Dynamics, Cornell University, New York, NY, 2018.
  97. D.C. Dermisis, A.N. Papanicolaou, Determining the 2-D Surface Velocity Field around Hydraulic Structures With the Use of a Large Scale Particle Image Velocimetry (LSPIV) Technique, Proceedings of the World Water and Environmental Resources Congress 2005: Impacts of Global Climate Change, Anchorage, Alaska, 2005.
  98. A. Bayon, D. Valero, R. García-Bartual, P.A. López-Jiménez, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environ. Model. Softw., 80 (2016) 322–335.
  99. M.M. Al-Mamari, S.A. Kantoush, S. Kobayashi, T. Sumi, M. Saber, Real-time measurement of flash-flood in a Wadi area by LSPIV and STIV, Hydrology, 6 (2019) 1–13, doi: 10.3390/hydrology6010027.