References

  1. F. Du, A.H. Hawari, B. Larbi, A. Ltaief, G.R. Pesch, M. Baune, J. Thöming, Fouling suppression in submerged membrane bioreactors by obstacle dielectrophoresis, J. Membr. Sci. 549 (2018) 466–473.
  2. H. Hamedi, M. Ehteshami, S.A. Mirbagheri, S. Zendehboudi, New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors, Chem. Eng. Res. Des., 144 (2019) 334–353.
  3. S.A. Mirbagheri, M. Bagheri, Z. Bagheri, A.M. Kamarkhani, Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm, Process Saf. Environ. Prot., 96 (2015) 111–124.
  4. A. Hosseinzadeh, J.L. Zhou, A. Altaee, M. Baziar, X. Li, Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network, Bioresour. Technol., 310 (2020), doi: 10.1016/j. biortech.2020.123391.
  5. F. Schmitt, R. Banu, I.T. Yeom, K.U. Do, Development of artificial neural networks to predict membrane fouling in an anoxicaerobic membrane bioreactor treating domestic wastewater, Biochem. Eng. J., 133 (2018) 47–58.
  6. M. Gander, B. Jefferson, S. Judd, Aerobic MBRs for domestic wastewater treatment: a review with cost considerations, Sep. Purif. Technol., 18 (2000) 119–130.
  7. M.C. Ozturk, F. Martin Serrat, F. Teymour, Optimization of aeration profiles in the activated sludge process, Chem. Eng. Sci., 139 (2016) 1–14.
  8. D. Guibert, R. Ben Aim, H. Rabie, P. Côté, Aeration performance of immersed hollow-fiber membranes in a bentonite suspension, Desalination, 148 (2002) 395–400.
  9. R. Van Kaam, D. Anne-Archard, M. Alliet, S. Lopez, C. Albasi, Aeration mode, shear stress and sludge rheology in a submerged membrane bioreactor: some keys of energy saving, Desalination, 199 (2006) 482–484.
  10. E. Braak, M. Alliet, S. Schetrite, C. Albasi, Aeration and hydrodynamics in submerged membrane bioreactors, J. Membr. Sci., 379 (2011) 1–18.
  11. R. Van Kaam, D. Anne-Archard, M.A. Gaubert, C. Albasi, Rheological characterization of mixed liquor in a submerged membrane bioreactor: interest for process management, J. Membr. Sci., 317 (2008) 26–33.
  12. S. Buetehorn, C.N. Koh, T. Wintgens, D. Volmering, K. Vossenkaul, T. Melin, Investigating the impact of production conditions on membrane properties for MBR applications, Desalination, 231 (2008) 191–199.
  13. J. Chang, W. Liang, E. Xiao, Z. Wu, Effect of intermittent aeration on the treatment performance in a submerged membrane bioreactor, Wuhan Univ. J. Nat. Sci., 15 (2010) 455–460.
  14. P. Le-Clech, B. Jefferson, S.J. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor, J. Membr. Sci., 218 (2003) 117–129.
  15. M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review, Process Saf. Environ. Prot., 123 (2019) 229–252.
  16. M. Hamachi, M. Cabassud, A. Davin, M. Mietton Peuchot, Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks, Chem. Eng. Process. Process Intensif., 38 (1999) 203–210.
  17. M. Asghari, A. Dashti, M. Rezakazemi, E. Jokar, H. Halakoei, Application of neural networks in membrane separation, Rev. Chem. Eng., 36 (2018) 265–310.
  18. Z. Chen, N. Ren, A. Wang, Z.P. Zhang, Y. Shi, A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater, Water Res., 42 (2008) 3385–3392.
  19. Z. Liu, D. Pan, J. Wang, S. Yang, Modelling of Membrane Fouling by PCA-PSOBP Neural Network, 2010 International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan, 2010, pp. 34–37.
  20. C. Li, Z. Yang, H. Yan, T. Wang, The application and research of the GA-BP neural network algorithm in the MBr membrane fouling, Abstr. Appl. Anal., 2014 (2014), doi: 10.1155/2014/673156.
  21. A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network, J. Hazard. Mater. 192 (2011) 568–575.
  22. S.A. Mirbagheri, M. Bagheri, S. Boudaghpour, M. Ehteshami, Z. Bagheri, Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks, J. Environ. Health Sci. Eng., 13 (2015) 1–15.
  23. H. Hazrati, A.H. Moghaddam, M. Rostamizadeh, The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: experimental and artificial neural network modeling, J. Environ. Chem. Eng., 5 (2017) 3005–3013.
  24. S. Geissler, T. Wintgens, T. Melin, K. Vossenkaul, C. Kullmann, Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment, Desalination, 178 (2005) 125–134.
  25. C. Li, X. Wang, Application of MBR Membrane Flux Prediction Based on Elman Neural Network, in: DEStech Trans. Eng. Technol. Res., 2018, pp. 365–372. Available at: https://doi.org/10.12783/dtetr/iccere2017/18308.
  26. Y. Chen, G. Yu, Y. Long, J. Teng, X. You, B.Q. Liao, H. Lin, Application of radial basis function artificial neural network to quantify interfacial energies related to membrane fouling in a membrane bioreactor, Bioresour. Technol., 293 (2019), doi: 10.1016/j.biortech.2019.122103.
  27. Z. Zhao, Y. Lou, Y. Chen, H. Lin, R. Li, G. Yu, Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN), Bioresour. Technol., 282 (2019) 262–268.
  28. Y. Cai, X. Li, A.A. Zaidi, Y. Shi, K. Zhang, R. Feng, A. Lin, C. Liu, Effect of hydraulic retention time on pollutants removal from real ship sewage treatment via a pilot-scale air-lift multilevel circulation membrane bioreactor, Chemosphere, 236 (2019), doi:10.1016/j.chemosphere.2019.07.069.
  29. Y. Cai, A.A. Zaidi, Y. Shi, K. Zhang, X. Li, S. Xiao, A. Lin, Influence of salinity on the biological treatment of domestic ship sewage using an air-lift multilevel circulation membrane reactor, Environ. Sci. Pollut. Res., 26 (2019) 37026–37036.
  30. Y. Cai, X. Li, A.A. Zaidi, Y. Shi, K. Zhang, P. Sun, Z. Lu, Processing efficiency, simulation and enzyme activities analysis of an airlift multilevel circulation membrane bioreactor (AMCMBR) on marine domestic sewage treatment, Period. Polytech., Chem. Eng., 63 (2019) 448–458.
  31. Y. Cai, T. Ben, A.A. Zaidi, Y. Shi, K. Zhang, A. Lin, C. Liu, Effect of pH on pollutants removal of ship sewage treatment in an innovative aerobic-anaerobic micro-sludge MBR system, Water Air Soil Pollut., 230 (2019), doi: 10.1007/s11270-019-4211-0.
  32. Z. Chen, A. Zhou, N. Ren, Y. Tian, D. Hu, Pollutants removal and simulation model of combined membrane process for wastewater treatment and reuse in submarine cabin for long voyage, J. Environ. Sci. 21 (2009) 1503–1512.
  33. D. Nguyen, B. Widrow, Improving the Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights, 1990 IJCNN International Joint Conference on Neural Networks, 1990, San Diego, CA, 1990.
  34. J.J. Moré, The Levenberg–Marquardt Algorithm: Implementation and Theory, G.A. Watson, Ed., Numerical Analysis, Lecture Notes in Mathematics, Vol. 680, Springer, Berlin, Heidelberg, 1978, pp. 105–116.
  35. M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network based correlation for estimating water permeability constant in RO desalination process under fouling, Desalination. 345 (2014) 101–111.
  36. G.D. Garson, Interpreting neural-network connection weights, AI Expert, 6 (1991) 46–51.
  37. A.T.C. Goh, Seismic liquefaction potential assessed by neural networks, J. Geotech. Eng., 120 (1994), doi: 10.1061/(ASCE)0733-9410(1994)120:9(1467).
  38. H.C. Chua, T.C. Arnot, J.A. Howell, Controlling fouling in membrane bioreactors operated with a variable throughput, Desalination, 149 (2002), 225–229.