References
- F. Du, A.H. Hawari, B. Larbi, A. Ltaief, G.R. Pesch, M. Baune,
J. Thöming, Fouling suppression in submerged membrane
bioreactors by obstacle dielectrophoresis, J. Membr. Sci.
549 (2018) 466–473.
- H. Hamedi, M. Ehteshami, S.A. Mirbagheri, S. Zendehboudi,
New deterministic tools to systematically investigate fouling
occurrence in membrane bioreactors, Chem. Eng. Res. Des.,
144 (2019) 334–353.
- S.A. Mirbagheri, M. Bagheri, Z. Bagheri, A.M. Kamarkhani,
Evaluation and prediction of membrane fouling in a submerged
membrane bioreactor with simultaneous upward and
downward aeration using artificial neural network-genetic
algorithm, Process Saf. Environ. Prot., 96 (2015) 111–124.
- A. Hosseinzadeh, J.L. Zhou, A. Altaee, M. Baziar, X. Li,
Modeling water flux in osmotic membrane bioreactor by
adaptive network-based fuzzy inference system and artificial
neural network, Bioresour. Technol., 310 (2020), doi: 10.1016/j.
biortech.2020.123391.
- F. Schmitt, R. Banu, I.T. Yeom, K.U. Do, Development of artificial
neural networks to predict membrane fouling in an anoxicaerobic
membrane bioreactor treating domestic wastewater,
Biochem. Eng. J., 133 (2018) 47–58.
- M. Gander, B. Jefferson, S. Judd, Aerobic MBRs for domestic
wastewater treatment: a review with cost considerations,
Sep. Purif. Technol., 18 (2000) 119–130.
- M.C. Ozturk, F. Martin Serrat, F. Teymour, Optimization of
aeration profiles in the activated sludge process, Chem. Eng.
Sci., 139 (2016) 1–14.
- D. Guibert, R. Ben Aim, H. Rabie, P. Côté, Aeration performance
of immersed hollow-fiber membranes in a bentonite suspension,
Desalination, 148 (2002) 395–400.
- R. Van Kaam, D. Anne-Archard, M. Alliet, S. Lopez,
C. Albasi, Aeration mode, shear stress and sludge rheology in a
submerged membrane bioreactor: some keys of energy saving,
Desalination, 199 (2006) 482–484.
- E. Braak, M. Alliet, S. Schetrite, C. Albasi, Aeration and
hydrodynamics in submerged membrane bioreactors,
J. Membr. Sci., 379 (2011) 1–18.
- R. Van Kaam, D. Anne-Archard, M.A. Gaubert, C. Albasi,
Rheological characterization of mixed liquor in a submerged
membrane bioreactor: interest for process management,
J. Membr. Sci., 317 (2008) 26–33.
- S. Buetehorn, C.N. Koh, T. Wintgens, D. Volmering,
K. Vossenkaul, T. Melin, Investigating the impact of production
conditions on membrane properties for MBR applications,
Desalination, 231 (2008) 191–199.
- J. Chang, W. Liang, E. Xiao, Z. Wu, Effect of intermittent aeration
on the treatment performance in a submerged membrane
bioreactor, Wuhan Univ. J. Nat. Sci., 15 (2010) 455–460.
- P. Le-Clech, B. Jefferson, S.J. Judd, Impact of aeration, solids
concentration and membrane characteristics on the hydraulic
performance of a membrane bioreactor, J. Membr. Sci.,
218 (2003) 117–129.
- M. Bagheri, A. Akbari, S.A. Mirbagheri, Advanced control
of membrane fouling in filtration systems using artificial
intelligence and machine learning techniques: a critical review,
Process Saf. Environ. Prot., 123 (2019) 229–252.
- M. Hamachi, M. Cabassud, A. Davin, M. Mietton Peuchot,
Dynamic modelling of crossflow microfiltration of bentonite
suspension using recurrent neural networks, Chem. Eng.
Process. Process Intensif., 38 (1999) 203–210.
- M. Asghari, A. Dashti, M. Rezakazemi, E. Jokar, H. Halakoei,
Application of neural networks in membrane separation,
Rev. Chem. Eng., 36 (2018) 265–310.
- Z. Chen, N. Ren, A. Wang, Z.P. Zhang, Y. Shi, A novel
application of TPAD-MBR system to the pilot treatment of
chemical synthesis-based pharmaceutical wastewater, Water
Res., 42 (2008) 3385–3392.
- Z. Liu, D. Pan, J. Wang, S. Yang, Modelling of Membrane
Fouling by PCA-PSOBP Neural Network, 2010 International
Conference on Computing, Control and Industrial Engineering,
IEEE, Wuhan, 2010, pp. 34–37.
- C. Li, Z. Yang, H. Yan, T. Wang, The application and
research of the GA-BP neural network algorithm in the
MBr membrane fouling, Abstr. Appl. Anal., 2014 (2014),
doi: 10.1155/2014/673156.
- A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh,
L.C. Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of
membrane bioreactor treating hypersaline oily wastewater by
artificial neural network, J. Hazard. Mater. 192 (2011) 568–575.
- S.A. Mirbagheri, M. Bagheri, S. Boudaghpour, M. Ehteshami,
Z. Bagheri, Performance evaluation and modeling of a
submerged membrane bioreactor treating combined municipal
and industrial wastewater using radial basis function artificial
neural networks, J. Environ. Health Sci. Eng., 13 (2015) 1–15.
- H. Hazrati, A.H. Moghaddam, M. Rostamizadeh, The influence
of hydraulic retention time on cake layer specifications in
the membrane bioreactor: experimental and artificial neural
network modeling, J. Environ. Chem. Eng., 5 (2017) 3005–3013.
- S. Geissler, T. Wintgens, T. Melin, K. Vossenkaul, C. Kullmann,
Modelling approaches for filtration processes with novel
submerged capillary modules in membrane bioreactors for
wastewater treatment, Desalination, 178 (2005) 125–134.
- C. Li, X. Wang, Application of MBR Membrane Flux Prediction
Based on Elman Neural Network, in: DEStech Trans. Eng.
Technol. Res., 2018, pp. 365–372. Available at: https://doi.org/10.12783/dtetr/iccere2017/18308.
- Y. Chen, G. Yu, Y. Long, J. Teng, X. You, B.Q. Liao, H. Lin,
Application of radial basis function artificial neural network
to quantify interfacial energies related to membrane fouling
in a membrane bioreactor, Bioresour. Technol., 293 (2019),
doi: 10.1016/j.biortech.2019.122103.
- Z. Zhao, Y. Lou, Y. Chen, H. Lin, R. Li, G. Yu, Prediction of
interfacial interactions related with membrane fouling
in a membrane bioreactor based on radial basis function
artificial neural network (ANN), Bioresour. Technol.,
282 (2019) 262–268.
- Y. Cai, X. Li, A.A. Zaidi, Y. Shi, K. Zhang, R. Feng, A. Lin,
C. Liu, Effect of hydraulic retention time on pollutants removal
from real ship sewage treatment via a pilot-scale air-lift
multilevel circulation membrane bioreactor, Chemosphere,
236 (2019), doi:10.1016/j.chemosphere.2019.07.069.
- Y. Cai, A.A. Zaidi, Y. Shi, K. Zhang, X. Li, S. Xiao, A. Lin,
Influence of salinity on the biological treatment of domestic
ship sewage using an air-lift multilevel circulation membrane
reactor, Environ. Sci. Pollut. Res., 26 (2019) 37026–37036.
- Y. Cai, X. Li, A.A. Zaidi, Y. Shi, K. Zhang, P. Sun, Z. Lu, Processing
efficiency, simulation and enzyme activities analysis of an airlift
multilevel circulation membrane bioreactor (AMCMBR) on
marine domestic sewage treatment, Period. Polytech., Chem.
Eng., 63 (2019) 448–458.
- Y. Cai, T. Ben, A.A. Zaidi, Y. Shi, K. Zhang, A. Lin, C. Liu, Effect
of pH on pollutants removal of ship sewage treatment in an
innovative aerobic-anaerobic micro-sludge MBR system, Water
Air Soil Pollut., 230 (2019), doi: 10.1007/s11270-019-4211-0.
- Z. Chen, A. Zhou, N. Ren, Y. Tian, D. Hu, Pollutants removal
and simulation model of combined membrane process for
wastewater treatment and reuse in submarine cabin for
long voyage, J. Environ. Sci. 21 (2009) 1503–1512.
- D. Nguyen, B. Widrow, Improving the Learning Speed of
2-Layer Neural Networks by Choosing Initial Values of the
Adaptive Weights, 1990 IJCNN International Joint Conference
on Neural Networks, 1990, San Diego, CA, 1990.
- J.J. Moré, The Levenberg–Marquardt Algorithm: Implementation
and Theory, G.A. Watson, Ed., Numerical Analysis,
Lecture Notes in Mathematics, Vol. 680, Springer, Berlin,
Heidelberg, 1978, pp. 105–116.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network
based correlation for estimating water permeability constant in
RO desalination process under fouling, Desalination. 345 (2014)
101–111.
- G.D. Garson, Interpreting neural-network connection weights,
AI Expert, 6 (1991) 46–51.
- A.T.C. Goh, Seismic liquefaction potential assessed by
neural networks, J. Geotech. Eng., 120 (1994), doi: 10.1061/(ASCE)0733-9410(1994)120:9(1467).
- H.C. Chua, T.C. Arnot, J.A. Howell, Controlling fouling in
membrane bioreactors operated with a variable throughput,
Desalination, 149 (2002), 225–229.