References
- A.M. Aboukarima, M.A. Al-Sulaiman, M.S.A. EI Marazky,
Effect of sodium adsorption ratio and electric conductivity of
the applied water on infiltration in a sandy-loam soil, Water SA,
44 (2018) 105–110.
- I. Shainberg, J. Letey, Response of soils to sodic and saline
conditions, Hilgardia, 52 (1984) 1–57.
- E.A. El-Morsy, M. Malik, J. Letey, Interactions between water
quality and polymer treatment on infiltration rate and clay
migration, Soil Technol., 4 (1991) 221–231.
- M.R. Emdad, R. Steven, R.J. Smith, H. Fardad, Effect of water
quality on soil structure and infiltration under furrow irrigation,
Irrig. Sci., 23 (2004) 55–60.
- B.B. Patel, R.S. Dave, Studies on the infiltration of salinealkali
soils of several parts of Mehsana and Patan districts of
North Gujarat, J. Appl. Technol. Environ. Sanitation, 1 (2011)
87–92.
- D.Ö. Faruk, A hybrid neural network and ARIMA model for
water quality time series prediction, Eng. Appl. Artif. Intell.,
23 (2010) 586–594.
- A.W. Jayawardena, F. Lai, Time series analysis of water quality
data in Pearl River, China, J. Environ. Eng., 115 (1989) 590–607.
- H. Sun, M. Koch, Case study: analysis and forecasting of salinity
in Apalachicola Bay, Florida, using Box-Jenkins ARIMA models,
J. Hydraul. Eng., 127 (2001) 718–727.
- G. Asadollahfardi, Analysis of surface water quality in Tehran,
Water Qual. Res. J., 37 (2002) 489–511.
- A. Kurnc K. Yürekli, O. Cevik, Performance of two stochastic
approaches for forecasting water quality and streamflow data
from Yeşilιrmak River, Turkey, Environ. Modell. Software,
20 (2005) 1195–1200.
- G. Asadollahfardi, M. Rahbar, M. Fatemiaghda, Application
of time series models to predict water quality of upstream and
downstream of the Latian Dam in Iran, Univ. J. Environ. Res.
Technol., 2 (2012) 26–36.
- S.J. Abudu, P. King, Z. Sheng, Comparison of the performance
of statistical models in forecasting monthly total dissolved
solids in the Rio Grande, J. Am. Water Resour. Assoc.,
48 (2012) 10–23.
- M. Ranjbar, M. Khaledian, Using ARIMA time series model in
forecasting the trend of changes in qualitative parameters of
Sefid-Rud River, Int. Res. J. Appl. Basic Sci., 8 (2014) 346–351.
- F.K. Arya, L. Zhang, Time series analysis of water quality
parameters at Stillaguamish River using order series method,
Stochastic Environ. Res. Risk Assess., 29 (2015) 227–239.
- M.H. Salmani, E. Salmani Jajaei, Forecasting models for flow
and total dissolved solids in Karoun river-Iran, J. Hydrol.,
535 (2016) 148–159.
- G. Asadollahfardi, A. Hemati, S. Moradinejad, R. Asadollahfardi,
Sodium adsorption ratio (SAR) prediction of the Chalghazi
river using artificial neural network (ANN) Iran, Curr. World
Environ., 8 (2013) 169–178.
- A. Azad, H. Karami, S. Farzin, A. Saeedian, H. Kashi, F. Sayyahi,
Prediction of water quality parameters using ANFIS optimized
by intelligence algorithms (case study: Gorganrood River),
KSCE J. Civ. Eng., 22 (2018) 2206–2213.
- M.T. Sattari, A. Farkhondeh, J. Patrick Abraham, Estimation of
sodium adsorption ratio indicator using data mining methods:
a case study in Urmia Lake basin, Iran, Environ. Sci. Pollut. Res.,
25 (2018) 4776–4786.
- B. Singh, Prediction of the sodium absorption ratio using datadriven
models: a case study in Iran, Geol. Ecol. Landscapes,
4 (2020) 1–10.
- B.H.K. Al-Obaidi, B.H. Khudhair, R.S. Mahmood, R.A. Kadhim,
Water quality assessment and sodium adsorption ratio
prediction of Tigris River using artificial neural network, J. Eng.
Sci. Technol., 15 (2000) 3055–3066.
- A. Aslanargun, M. Mammadov, B. Yazici, S. Yolacan,
Comparison of ARIMA, neural networks and hybrid models in
time series: tourist arrival forecasting, J. Stat. Comput. Simul.,
77 (2007) 29–53.
- L.A. Dı´az-Robles, J.C. Ortega, J.S. Fu, G.D. Reed, J.C. Chow,
J.G. Watson, J.A. Moncada-Herrera, A hybrid ARIMA and
artificial neural networks model to forecast particulate matter
in urban areas: the case of Temuco, Chile, Atmos. Environ.,
42 (2008) 8331–8340.
- A.A. Yassen, Comparative Study of Artificial Neural Network
and ARIMA Models for Economic Forecasting, Mater Thesis,
Al-Azhar University, Gaza, 2011.
- A.A. Adebiyi, A.O. Adewumi, C.K. Ayo, Comparison of ARIMA
and artificial neural networks models for stock price prediction,
J. Appl. Math., 1 (2014) 1–7.
- D.E. Ighravwea, C.O. Anyaeche, A comparison of ARIMA and
ANN techniques in predicting port productivity and berth
effectiveness, Int. J. Data Network Sci., 3 (2019) 13–22.
- Z. Li, Y. Li, A comparative study on the prediction of the BP
artificial neural network model and the ARIMA model in the
incidence of AIDS, BMC Med. Inf. Decis. Making, 143 (2020)
1–13.
- G. Asadollahfardi, H. Zangooi, M. Asadi, M. Tayebi Jebeli,
A. Meshkat-Dini, N. Roohani. Comparison of Box–Jenkins
time series and ANN in predicting total dissolved solid at the
Zāyandé-Rūd River, Iran, J. Water Supply Res. Technol. AQUA,
67(2018) 673–684.
- G. Asadollahfardi, N. Heidarzadeh, A. Sekhavati, M. Asadi,
Optimization of water quality monitoring stations using
dynamic programming approach, a case study of the Mond
Basin Rivers, Iran, Environ. Dev. Sustainability, 23 (2021)
2867–2881, doi: 10.1007/s10668–020–00693–2.
- E. Rahnama, O. Bazrafshan, G. Asadollahfardi, Application
of data-driven methods to predict the sodium adsorption rate
(SAR) in different climate in Iran, Arabian J. Geosci., 13 (2020),
doi: 10.1007/s12517–020–06146–4.
- G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and
Control, 5th ed., Holden Day, San, Francisco, 1976.
- W. Wu, G.C. Dandy, H.R. Maier, Protocol for developing ANN
models and its application to the assessment of the quality
of the ANN model development process in drinking water
quality modelling, Environ. Modell. Software, 54 (2014) 108–127.
- H.R. Maier, A. Jain, G.C. Dandy, K.P. Sudheer, Methods used for
the development of neural networks for the prediction of water
resource variables in river systems: current status and future
directions, Environ. Modell. Software, 25 (2010) 891–909.
- M. Cakmakci, Adaptive neuro-fuzzy modelling of anaerobic
digestion of primary sedimentation sludge, Bioprocess Biosyst.
Eng., 30 (2007) 349–357.
- H. Abu Qdais, K. Bani Hani, N. Shatnawi, Modeling and
optimization of biogas production from a waste digester
using artificial neural network and genetic algorithm, Resour.
Conserv. Recyl., 54 (2010) 359–363.
- G. Asadollahfardi, A. Taklify, A. Ghanbari, Application of
artificial neural network to predict TDS in Talkheh Rud River,
J. Irrig. Drain. Eng., 138 (2012) 363–370.
- T. Beltramo, C. Ranzan, J. Hinrichs, B. Hitzmann, Artificial
neural network prediction of the biogas flow rate optimised
with an ant colony algorithm, Biosyst. Eng., 143 (2016) 68–78.
- B. Najafi, S. Faizollahzadeh Ardabili, Application of ANFIS,
ANN, and logistic methods in estimating biogas production
from spent mushroom compost (SMC), Resour. Conserv.
Recycl., 133 (2018) 169–178.
- C.W. Dawson, R.L. Wilby, Hydrological modelling using
artificial neural networks, Prog. Phys. Geogr., 25 (2001) 80–108.
- T. Kohonen, Self-Organization and Associative Memory,
Springer, New York, NY, Berlin, Heidelberg, 1984.
- X.M. Song, Radial Basis Function Networks for Empirical
Modeling of Chemical Process, MSc Thesis, University of
Helsinki, 1996.
- P.L. Narasimha, W.H. Delashmit, M.T. Manry, J. Li, F. Maldonado,
An integrated growing-pruning method for feedforward
network training, Neurocomputing, 71 (2008) 2831–2847.
- S. Chen, S.A. Billings, W. Luo, Orthogonal least squares methods
and their application to nonlinear system identification, Int. J.
Control, 50 (1989) 1873–1896.
- S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares
learning algorithm for radial basis function networks, IEEE
Trans. Neural Networks, 2 (1991) 302–309.
- C.J. Willmott, K. Matsuura, Advantages of the mean absolute
error (MAE) over the root mean square error (RMSE) in
assessing average model performance, Clim. Res., 30 (2005)
79–82.
- P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci.,
5 (2005) 89–97.
- J.E. Nash, J.V. Sutcliffe, River flow forecasting through
conceptual models’ part I—a discussion of principles, J. Hydrol.,
10 (1970) 282–290.