References
- P.S. Majumder, S.K. Gupta, Hybrid reactor for priority
pollutant nitrobenzene removal, Water Res., 37 (2003)
4331–4336.
- S.H. Hu, H.R. Yao, K.F. Wang, C. Lu, Y.G. Wu, Intensify removal
of nitrobenzene from aqueous solution using nano-zero valent
iron/granular activated carbon composite as Fenton-like
catalyst, Water Air Soil Pollut., 226 (2015) 1–13.
- H.Q. Zhao, Q. Liu, Y.X. Wang, Z.Y. Han, Z.G. Chen, Y. Mu,
Biochar enhanced biological nitrobenzene reduction with a
mixed culture in anaerobic systems: short-term and long-term
assessments, Chem. Eng. J., 351 (2018) 912–921.
- Y. Sun, Z.X. Yang, P.F. Tian, Y.Y. Sheng, J. Xu, Y.-F. Han, Oxidative
degradation of nitrobenzene by a Fenton-like reaction with
Fe-Cu bimetallic catalysts, Appl. Catal., B, 244 (2019) 1–10.
- Z.X. Qiao, R. Sun, Y.G. Wu, S.H. Hu, X.Y. Liu, J.W. Chan,
Microbial heterotrophic nitrification-aerobic denitrification
dominates simultaneous removal of aniline and ammonium
in aquatic ecosystems, Water Air Soil Pollut., 231 (2020) 3,
https://doi.org/10.1007/s11270-020-04476-3.
- Z.X. Qiao, Y.G. Wu, J. Qian, S.H. Hu, J.W. Chan, X.Y. Liu,
R. Sun, W.D. Wang, B. Zhou, A lab-scale study on heterotrophic
nitrification-aerobic denitrification for nitrogen control
in aquatic ecosystem, Environ. Sci. Pollut. Res., 27 (2020)
9307–9317.
- D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena,
F.S. García Einschlag, Nitrobenzene degradation in Fentonlike
systems using Cu(II) as catalyst. Comparison between
Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228 (2013)
1148–1157.
- H.T. Duan, Y. Liu, X.H. Yin, J.F. Bai, J. Qi, Degradation of
nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite
system, Chem. Eng. J., 283 (2016) 873–879.
- W.K. Kirui, S. Wu, S. Kizito, P.N. Carvalho, R.J. Dong, Pathways
of nitrobenzene degradation in horizontal subsurface flow
constructed wetlands: effect of intermittent aeration and
glucose addition, J. Environ. Manage., 166 (2016) 38–44.
- J.-H. Wu, F. Zhang, Rapid aerobic visible-light-driven photoreduction
of nitrobenzene, Sci. Total Environ., 710 (2020)
136322, https://doi.org/10.1016/j.scitotenv.2019.136322.
- W.Z. Jiao, P.Z. Yang, W.Q. Gao, J.J. Qiao, Y.Z. Liu, Apparent
kinetics of the ozone oxidation of nitrobenzene in aqueous
solution enhanced by high gravity technology, Chem.
Eng. Process, 146 (2019) 107690, https://doi.org/10.1016/j.
cep.2019.107690.
- S. Chong, Y.L. Song, H. Zhao, G.M. Zhang, Enhanced
degradation of nitrobenzene by combined ultrasonic irradiation
and a zero-valent zinc catalyst, Desal. Water Treat., 57 (2016)
23856–23863.
- A.D. Bokare, W.Y. Choi, Review of iron-free Fenton-like
systems for activating H2O2 in advanced oxidation processes,
J. Hazard. Mater., 275 (2014) 121–135.
- M. Mohadesi, A. Shokri, Evaluation of Fenton and photo-
Fenton processes for the removal of p-chloronitrobenzene in
aqueous environment using Box–Behnken design method,
Desal. Water Treat., 81 (2017) 199–208.
- M.-H. Zhang, H. Dong, L. Zhao, D.-X. Wang, D. Meng, A review
on Fenton process for organic wastewater treatment based
on optimization perspective, Sci. Total Environ., 670 (2019)
110–121.
- A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal
of pharmaceuticals from water by homo/heterogonous
Fenton-type processes – a review, Chemosphere, 174 (2017)
665–688.
- Y. Lü, J.F. Li, Y.M. Li, L.P. Liang, H.P. Dong, K. Chen, C.X. Yao,
Z.F. Li, J.X. Li, X.H. Guan, The roles of pyrite for enhancing
reductive removal of nitrobenzene by zero-valent iron,
Appl. Catal., B, 242 (2019) 9–18.
- Q. Liu, X.Q. Bai, X.T. Su, B. Huang, B.J. Wang, X.L. Zhang,
X.X. Ruan, W.M. Cao, Y.F. Xu, G.R. Qian, The promotion
effect of biochar on electrochemical degradation of
nitrobenzene, J. Cleaner Prod., 244 (2020) 118890, https://doi.
org/10.1016/j.jclepro.2019.118890.
- L. Liu, S.S. Fan, Y. Li, Removal of methylene blue in aqueous
solution by a Fenton-like catalyst prepared from municipal
sewage sludge, Desal. Water Treat., 138 (2019) 326–334.
- B.B. Feng, Y.X. Wei, Y.N. Qiu, S.F. Zuo, N. Ye, Ce-modified
AlZr pillared clays supported-transition metals for catalytic
combustion of chlorobenzene, J. Rare Earths, 36 (2018)
1169–1174.
- K.V. Bineesh, D.-K. Kim, H.-J. Cho, D.-W. Park, Synthesis of
metal-oxide pillared montmorillonite clay for the selective
catalytic oxidation of H2S, J. Ind. Eng. Chem., 16 (2010) 593–597.
- S.Ts. Khankhasaeva, S.V. Badmaeva, Removal of p-aminobenzenesulfanilamide
from water solutions by catalytic photooxidation
over Fe-pillared clay, Water Res., 185 (2020) 116212,
https://doi.org/10.1016/j.watres.2020.116212.
- J.X. Zhu, T. Wang, R.L. Zhu, F. Ge, J.M. Wei, P. Yuan,
H.P. He, Novel polymer/surfactant modified montmorillonite
hybrids and the implications for the treatment of hydrophobic
organic compounds in wastewaters, Appl. Clay Sci., 51 (2011)
317–322.
- Y.G. Wu, M.C. Yang, S.H. Hu, L. Wang, H.R. Yao, Characteristics
and mechanisms of 4A zeolite supported nanoparticulate
zero-valent iron as Fenton-like catalyst to degrade methylene
blue, Toxicol. Environ. Chem., 96 (2014) 227–242.
- W. Najjar, S. Azabou, S. Sayadi, A. Ghorbel, Catalytic wet
peroxide photo-oxidation of phenolic olive oil mill wastewater
contaminants: Part I. Reactivity of tyrosol over (Al–Fe) PILC,
Appl. Catal., B, 74 (2007) 11–18.
- H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P. Da Costa, Photo-
Fenton oxidation of phenol over a Cu-doped Fe-pillared clay,
C.R. Chim., 18 (2015) 1161–1169.
- M.M. Bello, A.A. Abdul Raman, A. Asghar, A review on
approaches for addressing the limitations of Fenton oxidation
for recalcitrant wastewater treatment, Process Saf. Environ.
Prot., 126 (2019) 119–140.
- E. Rosales, D. Anasie, M. Pazos, I. Lazar, M.A. Sanromán,
Kaolinite adsorption-regeneration system for dyestuff treatment
by Fenton based processes, Sci. Total Environ., 622–623 (2018)
556–562.
- B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam,
S. Jorfi, Heterogeneous catalytic degradation of
organic compounds using nanoscale zero-valent iron supported
on kaolinite: mechanism, kinetic and feasibility studies,
J. Taiwan Inst. Chem. Eng., 96 (2019) 329–340.
- Y.G. Wu, H.R. Yao, S. Khan, S.H. Hu, L. Wang, Characteristics
and mechanisms of kaolinite-supported zero-valent iron/H2O2
system for nitrobenzene degradation, CLEAN–Soil Air Water,
45 (2017) 1600826, https://doi.org/10.1002/clen.201600826.
- S.H. Hu, Y.G. Wu, H.R. Yao, C. Lu, C.J. Zhang, Enhanced Fentonlike
removal of nitrobenzene via internal microelectrolysis in
nano zerovalent iron/activated carbon composite, Water Sci.
Technol., 73 (2016) 153–160.
- Y.G. Wu, L. Fan, S.H. Hu, S.C. Wang, H.R. Yao, K.F. Wang,
Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system, Int. J. Environ. Sci. Technol., 16 (2019)
4551–4562.
- Y. Wang, J.S. Fang, J.C. Crittenden, C. Shen, Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a
wide pH range using solar-light-driven irradiation, J. Hazard.
Mater., 329 (2017) 321–329.
- Y.Y. Liu, X.M. Liu, Y.P. Zhao, D.D. Dionysiou, Aligned α-FeOOH
nanorods anchored on a graphene oxide-carbon nanotubes
aerogel can serve as an effective Fenton-like oxidation catalyst,
Appl. Catal., B, 213 (2017) 74–86.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in
water/wastewater treatment: principles and applications.
A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- J.G. Shi, Z.H. Ai, L.Z. Zhang, Fe@Fe2O3 core-shell nanowires
enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II)
cycles, Water Res., 59 (2014) 145–153.
- Y.M. Li, Y.Q. Lu, X.L. Zhu, Photo-Fenton discoloration of
the azo dye X-3B over pillared bentonites containing iron,
J. Hazard. Mater., 132 (2006) 196–201.
- E. Guélou, J. Barrault, J. Fournier, J.-M. Tatibouët, Active iron
species in the catalytic wet peroxide oxidation of phenol over
pillared clays containing iron, Appl. Catal., B, 44 (2003) 1–8.
- M. Bobu, A. Yediler, I. Siminiceanu, S. Schulte-Hostede,
Degradation studies of ciprofloxacin on a pillared iron catalyst,
Appl. Catal., B, 83 (2008) 15–23.
- H.H. Huang, M.C. Lu, J. Chen, Catalytic decomposition of
hydrogen peroxide and -chlorophenol with iron oxides, Water
Res., 35 (2001) 2291–2299.
- J. Guo, M. Al-Dahhan, Catalytic wet oxidation of phenol by
hydrogen peroxide over pillared clay catalyst, Ind. Eng. Chem.
Res., 42 (2003) 2450–2460.
- R. Shende, J. Levec, Wet oxidation kinetics of refractory
low molecular mass carboxylic acids, Ind. Eng. Chem. Res.,
38 (1999) 3830–3837.
- M.A. Oturan, M. Pimentel, N. Oturan, I. Sirés, Reaction sequence
for the mineralization of the short-chain carboxylic acids usually
formed upon cleavage of aromatics during electrochemical
Fenton treatment, Electrochim. Acta, 54 (2008) 173–182.
- G. Ruppert, R. Bauer, G. Heisler, S. Novalic, Mineralization of
cyclic organic water contaminants by the photo-Fenton reaction
— influence of structure and substituents, Chemosphere,
27 (1993) 1339–1347.
- J.H. Ma, W.J. Song, C.C. Chen, W.H. Ma, J.C. Zhao, Y.L. Tang,
Fenton degradation of organic compounds promoted by dyes
under visible irradiation, Environ. Sci. Technol., 39 (2005)
5810–5815.
- N. Masomboon, C. Ratanatamskul, M.-C. Lu, Chemical
oxidation of 2,6-dimethylaniline in the Fenton process, Environ.
Sci. Technol., 43 (2009) 8629–8634.
- J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente,
M.L. Rojas-Cervantes, A.J. López-Peinado, R.M. Martín-
Aranda, Fenton-like oxidation of orange II solutions using
heterogeneous catalysts based on saponite clay, Appl. Catal., B,
71 (2007) 44–56.
- C. Catrinescu, C. Teodosiu, M. Macoveanu, J. Miehe-Brendlé,
R. Le Dred, Catalytic wet peroxide oxidation of phenol
over Fe-exchanged pillared beidellite, Water Res., 37 (2003)
1154–1160.
- T. Zhang, J. Ma, Catalytic ozonation of trace nitrobenzene
in water with synthetic goethite, J. Mol. Catal. A: Chem.,
279 (2008) 82–89.
- I.A. Salem, M. El-Maazawi, A.B. Zaki, Kinetics and mechanisms
of decomposition reaction of hydrogen peroxide in presence
of metal complexes, Int. J. Chem. Kinet., 32 (2000) 643–666.