References

  1. P.S. Majumder, S.K. Gupta, Hybrid reactor for priority pollutant nitrobenzene removal, Water Res., 37 (2003) 4331–4336.
  2. S.H. Hu, H.R. Yao, K.F. Wang, C. Lu, Y.G. Wu, Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as Fenton-like catalyst, Water Air Soil Pollut., 226 (2015) 1–13.
  3. H.Q. Zhao, Q. Liu, Y.X. Wang, Z.Y. Han, Z.G. Chen, Y. Mu, Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: short-term and long-term assessments, Chem. Eng. J., 351 (2018) 912–921.
  4. Y. Sun, Z.X. Yang, P.F. Tian, Y.Y. Sheng, J. Xu, Y.-F. Han, Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts, Appl. Catal., B, 244 (2019) 1–10.
  5. Z.X. Qiao, R. Sun, Y.G. Wu, S.H. Hu, X.Y. Liu, J.W. Chan, Microbial heterotrophic nitrification-aerobic denitrification dominates simultaneous removal of aniline and ammonium in aquatic ecosystems, Water Air Soil Pollut., 231 (2020) 3, https://doi.org/10.1007/s11270-020-04476-3.
  6. Z.X. Qiao, Y.G. Wu, J. Qian, S.H. Hu, J.W. Chan, X.Y. Liu, R. Sun, W.D. Wang, B. Zhou, A lab-scale study on heterotrophic nitrification-aerobic denitrification for nitrogen control in aquatic ecosystem, Environ. Sci. Pollut. Res., 27 (2020) 9307–9317.
  7. D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena, F.S. García Einschlag, Nitrobenzene degradation in Fentonlike systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228 (2013) 1148–1157.
  8. H.T. Duan, Y. Liu, X.H. Yin, J.F. Bai, J. Qi, Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system, Chem. Eng. J., 283 (2016) 873–879.
  9. W.K. Kirui, S. Wu, S. Kizito, P.N. Carvalho, R.J. Dong, Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: effect of intermittent aeration and glucose addition, J. Environ. Manage., 166 (2016) 38–44.
  10. J.-H. Wu, F. Zhang, Rapid aerobic visible-light-driven photoreduction of nitrobenzene, Sci. Total Environ., 710 (2020) 136322, https://doi.org/10.1016/j.scitotenv.2019.136322.
  11. W.Z. Jiao, P.Z. Yang, W.Q. Gao, J.J. Qiao, Y.Z. Liu, Apparent kinetics of the ozone oxidation of nitrobenzene in aqueous solution enhanced by high gravity technology, Chem. Eng. Process, 146 (2019) 107690, https://doi.org/10.1016/j. cep.2019.107690.
  12. S. Chong, Y.L. Song, H. Zhao, G.M. Zhang, Enhanced degradation of nitrobenzene by combined ultrasonic irradiation and a zero-valent zinc catalyst, Desal. Water Treat., 57 (2016) 23856–23863.
  13. A.D. Bokare, W.Y. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  14. M. Mohadesi, A. Shokri, Evaluation of Fenton and photo- Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box–Behnken design method, Desal. Water Treat., 81 (2017) 199–208.
  15. M.-H. Zhang, H. Dong, L. Zhao, D.-X. Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670 (2019) 110–121.
  16. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – a review, Chemosphere, 174 (2017) 665–688.
  17. Y. Lü, J.F. Li, Y.M. Li, L.P. Liang, H.P. Dong, K. Chen, C.X. Yao, Z.F. Li, J.X. Li, X.H. Guan, The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron, Appl. Catal., B, 242 (2019) 9–18.
  18. Q. Liu, X.Q. Bai, X.T. Su, B. Huang, B.J. Wang, X.L. Zhang, X.X. Ruan, W.M. Cao, Y.F. Xu, G.R. Qian, The promotion effect of biochar on electrochemical degradation of nitrobenzene, J. Cleaner Prod., 244 (2020) 118890, https://doi. org/10.1016/j.jclepro.2019.118890.
  19. L. Liu, S.S. Fan, Y. Li, Removal of methylene blue in aqueous solution by a Fenton-like catalyst prepared from municipal sewage sludge, Desal. Water Treat., 138 (2019) 326–334.
  20. B.B. Feng, Y.X. Wei, Y.N. Qiu, S.F. Zuo, N. Ye, Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene, J. Rare Earths, 36 (2018) 1169–1174.
  21. K.V. Bineesh, D.-K. Kim, H.-J. Cho, D.-W. Park, Synthesis of metal-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S, J. Ind. Eng. Chem., 16 (2010) 593–597.
  22. S.Ts. Khankhasaeva, S.V. Badmaeva, Removal of p-aminobenzenesulfanilamide from water solutions by catalytic photooxidation over Fe-pillared clay, Water Res., 185 (2020) 116212, https://doi.org/10.1016/j.watres.2020.116212.
  23. J.X. Zhu, T. Wang, R.L. Zhu, F. Ge, J.M. Wei, P. Yuan, H.P. He, Novel polymer/surfactant modified montmorillonite hybrids and the implications for the treatment of hydrophobic organic compounds in wastewaters, Appl. Clay Sci., 51 (2011) 317–322.
  24. Y.G. Wu, M.C. Yang, S.H. Hu, L. Wang, H.R. Yao, Characteristics and mechanisms of 4A zeolite supported nanoparticulate zero-valent iron as Fenton-like catalyst to degrade methylene blue, Toxicol. Environ. Chem., 96 (2014) 227–242.
  25. W. Najjar, S. Azabou, S. Sayadi, A. Ghorbel, Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants: Part I. Reactivity of tyrosol over (Al–Fe) PILC, Appl. Catal., B, 74 (2007) 11–18.
  26. H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P. Da Costa, Photo- Fenton oxidation of phenol over a Cu-doped Fe-pillared clay, C.R. Chim., 18 (2015) 1161–1169.
  27. M.M. Bello, A.A. Abdul Raman, A. Asghar, A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment, Process Saf. Environ. Prot., 126 (2019) 119–140.
  28. E. Rosales, D. Anasie, M. Pazos, I. Lazar, M.A. Sanromán, Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes, Sci. Total Environ., 622–623 (2018) 556–562.
  29. B. Kakavandi, A. Takdastan, S. Pourfadakari, M. Ahmadmoazzam, S. Jorfi, Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: mechanism, kinetic and feasibility studies, J. Taiwan Inst. Chem. Eng., 96 (2019) 329–340.
  30. Y.G. Wu, H.R. Yao, S. Khan, S.H. Hu, L. Wang, Characteristics and mechanisms of kaolinite-supported zero-valent iron/H2O2 system for nitrobenzene degradation, CLEAN–Soil Air Water, 45 (2017) 1600826, https://doi.org/10.1002/clen.201600826.
  31. S.H. Hu, Y.G. Wu, H.R. Yao, C. Lu, C.J. Zhang, Enhanced Fentonlike removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite, Water Sci. Technol., 73 (2016) 153–160.
  32. Y.G. Wu, L. Fan, S.H. Hu, S.C. Wang, H.R. Yao, K.F. Wang, Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system, Int. J. Environ. Sci. Technol., 16 (2019) 4551–4562.
  33. Y. Wang, J.S. Fang, J.C. Crittenden, C. Shen, Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation, J. Hazard. Mater., 329 (2017) 321–329.
  34. Y.Y. Liu, X.M. Liu, Y.P. Zhao, D.D. Dionysiou, Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst, Appl. Catal., B, 213 (2017) 74–86.
  35. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  36. J.G. Shi, Z.H. Ai, L.Z. Zhang, Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles, Water Res., 59 (2014) 145–153.
  37. Y.M. Li, Y.Q. Lu, X.L. Zhu, Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron, J. Hazard. Mater., 132 (2006) 196–201.
  38. E. Guélou, J. Barrault, J. Fournier, J.-M. Tatibouët, Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron, Appl. Catal., B, 44 (2003) 1–8.
  39. M. Bobu, A. Yediler, I. Siminiceanu, S. Schulte-Hostede, Degradation studies of ciprofloxacin on a pillared iron catalyst, Appl. Catal., B, 83 (2008) 15–23.
  40. H.H. Huang, M.C. Lu, J. Chen, Catalytic decomposition of hydrogen peroxide and -chlorophenol with iron oxides, Water Res., 35 (2001) 2291–2299.
  41. J. Guo, M. Al-Dahhan, Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst, Ind. Eng. Chem. Res., 42 (2003) 2450–2460.
  42. R. Shende, J. Levec, Wet oxidation kinetics of refractory low molecular mass carboxylic acids, Ind. Eng. Chem. Res., 38 (1999) 3830–3837.
  43. M.A. Oturan, M. Pimentel, N. Oturan, I. Sirés, Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment, Electrochim. Acta, 54 (2008) 173–182.
  44. G. Ruppert, R. Bauer, G. Heisler, S. Novalic, Mineralization of cyclic organic water contaminants by the photo-Fenton reaction — influence of structure and substituents, Chemosphere, 27 (1993) 1339–1347.
  45. J.H. Ma, W.J. Song, C.C. Chen, W.H. Ma, J.C. Zhao, Y.L. Tang, Fenton degradation of organic compounds promoted by dyes under visible irradiation, Environ. Sci. Technol., 39 (2005) 5810–5815.
  46. N. Masomboon, C. Ratanatamskul, M.-C. Lu, Chemical oxidation of 2,6-dimethylaniline in the Fenton process, Environ. Sci. Technol., 43 (2009) 8629–8634.
  47. J.H. Ramirez, C.A. Costa, L.M. Madeira, G. Mata, M.A. Vicente, M.L. Rojas-Cervantes, A.J. López-Peinado, R.M. Martín- Aranda, Fenton-like oxidation of orange II solutions using heterogeneous catalysts based on saponite clay, Appl. Catal., B, 71 (2007) 44–56.
  48. C. Catrinescu, C. Teodosiu, M. Macoveanu, J. Miehe-Brendlé, R. Le Dred, Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite, Water Res., 37 (2003) 1154–1160.
  49. T. Zhang, J. Ma, Catalytic ozonation of trace nitrobenzene in water with synthetic goethite, J. Mol. Catal. A: Chem., 279 (2008) 82–89.
  50. I.A. Salem, M. El-Maazawi, A.B. Zaki, Kinetics and mechanisms of decomposition reaction of hydrogen peroxide in presence of metal complexes, Int. J. Chem. Kinet., 32 (2000) 643–666.