References
- B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous
solutions: kinetics, equilibrium, thermodynamics and
desorption studies, Colloids Surf., B, 84 (2011) 221–232.
- Y.Z. He, Y.J. Xiang, Y.Y. Zhou, Y. Yang, J.C. Zhang, H.L. Huang,
C. Shang, L. Luo, J. Gao, L. Tang, Selenium contamination,
consequences and remediation techniques in water and soils:
a review, Environ. Res., 164 (2018) 288–301.
- J. Stefaniak, A. Dutta, B. Verbinnen, M. Shakya, E.R. Rene,
Selenium removal from mining and process wastewater:
a systematic review of available technologies, J. Water Supply
Res. Technol. AQUA, 67 (2018) 903–918.
- H.-T. Fan, W. Sun, B. Jiang, Q.-J. Wang, D.-W. Li, C.-C. Huang,
K.-J. Wang, Z.-G. Zhang, W.-X. Li, Adsorption of antimony(III)
from aqueous solution by mercapto-functionalized silicasupported
organic–inorganic hybrid sorbent: mechanism
insights, Chem. Eng. J., 286 (2016) 128–138.
- T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II)
and Pb(II) from aqueous solutions on activated alumina,
J. Colloid Interface Sci., 333 (2009) 14–26.
- T. Tatarchuk, A. Shyichuk, I. Mironyuk, Mu. Naushad,
A review on removal of uranium(VI) ions using titanium
dioxide based sorbents, J. Mol. Liq., 293 (2019) 11563, https://doi.org/10.1016/j.molliq.2019.111563.
- T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk,
Mu. Naushad, I. Mironyuk, D. Ziółkowska, Adsorptive
removal of toxic Methylene Blue and Acid Orange 7 dyes from
aqueous medium using cobalt-zinc ferrite nanoadsorbents,
Desal. Water Treat., 150 (2019) 374–385.
- I. Mironyuk, T. Tatarchuk, Mu. Naushad, H. Vasylyeva,
I. Mykytyn, Highly efficient adsorption of strontium ions by
carbonated mesoporous TiO2, J. Mol. Liq., 285 (2019) 742–753.
- E. Bazrafshan, M. Sobhanikia, F.K. Mostafapour, H. Kamani,
D. Balarak, Chromium biosorption from aqueous environments
by mucilaginous seeds of Cydonia oblonga: thermodynamic,
equilibrium and kinetic studies, Global NEST J., 19 (2017)
269–277.
- R. Kamaraj, S. Vasudevan, Decontamination of selenate from
aqueous solution by oxidized multi-walled carbon nanotubes,
Powder Technol., 274 (2015) 268–275.
- G.B. Jegadeesan, K. Mondal, S.B. Lalvani, Adsorption of Se(IV)
and Se(VI) using copper-impregnated activated carbon and fly
ash-extracted char carbon, Water Air Soil Pollut., 226 (2015),
https://doi.org/10.1007/s11270-015-2520-5.
- Z.Y. Ma, C. Shan, J.L. Liang, M.P. Tong, Efficient adsorption
of selenium(IV) from water by hematite modified magnetic
nanoparticles, Chemosphere, 193 (2018) 134–141.
- S.F. Evans, M.R. Ivancevic, J.Q. Yan, A.K. Naskar, A.M. Levine,
R.J. Lee, C. Tsouris, M.P. Paranthaman, Magnetic adsorbents
for selective removal of selenite from contaminated water,
Sep. Sci. Technol., 54 (2019) 2138–2146.
- A.T. Jacobson, M.H. Fan, Evaluation of natural goethite on the
removal of arsenate and selenite from water, J. Environ. Sci.,
76 (2019) 133–141.
- M. Matulová, M. Urík, M. Bujdoš, E. Duborská, M. Cesnek,
M.B. Miglierini, Selenite sorption onto goethite: isotherm
and ion-competitive studies, and effect of pH on sorption
kinetics, Chem. Pap., 73 (2019) 2975–2985.
- M. Rovira, J. Giménez, M. Martínez, X. Martínez-Lladó,
J. de Pablo, V. Martí, L. Duro, Sorption of selenium(IV) and
selenium(VI) onto natural iron oxides: goethite and hematite,
J. Hazard. Mater., 150 (2008) 279–284.
- M.J. Jang, S.Y. Pak, M.-J. Kim, Comparison of adsorption
characteristics of Se(IV) and Se(VI) onto hematite: effects of
reaction time, initial concentration, pH, and ionic strength,
Environ. Earth Sci., 74 (2015) 1169–1173.
- W.L. Sun, W.Y. Pan, F. Wang, N. Xu, Removal of Se(IV) and
Se(VI) by MFe2O4 nanoparticles from aqueous solution, Chem.
Eng. J., 273 (2015) 353–362.
- N. Gezer, M. Gülfen, A.O. Aydın, Adsorption of selenite and
selenate ions onto thiourea-formaldehyde resin, J. Appl. Polym.
Sci., 122 (2011) 1134–1141.
- J.M. Wei, W. Zhang, W.Y. Pan, C.R. Li, W.L. Sun, Experimental
and theoretical investigations on Se(IV) and Se(VI) adsorption
to UiO-66-based metal-organic frameworks, Environ. Sci.:
Nano, 5 (2018) 1441–1453.
- K. Kalaitzidou, A.-A. Nikoletopoulos, N. Tsiftsakis, F. Pinakidou,
M. Mitrakas, Adsorption of Se(IV) and Se(VI) species by
iron oxy-hydroxides: effect of positive surface charge density,
Sci. Total Environ., 687 (2019) 1197–1206.
- A. Onoguchi, G. Granata, D. Haraguchi, H. Hayashi, C. Tokoro,
Kinetics and mechanism of selenate and selenite removal in
solution by green rust-sulfate, R. Soc. Open Sci., 6 (2019) 182147,
doi: 10.1098/rsos.182147.
- J.S. Zhang, R.S. Stanforth, S.O. Pehkonen, Effect of replacing
a hydroxyl group with a methyl group on arsenic(V) species
adsorption on goethite (α-FeOOH), J. Colloid Interface Sci.,
306 (2007) 16–21.
- F. Yang, S.S. Zhang, H.P. Li, S.S. Li, K. Cheng, J.-S. Li, D.C.W.
Tsang, Corn straw-derived biochar impregnated with α-FeOOH
nanorods for highly effective copper removal, Chem. Eng.
J., 348 (2018) 191–201.
- E.M. Cálix, L.C. Tan, E.R. Rene, Y.V. Nancharaiah, E.D. Van
Hullebusch, P.N.L. Lens, Simultaneous removal of sulfate
and selenate from wastewater by process integration of an
ion exchange column and upflow anaerobic sludge blanket
bioreactor, Sep. Sci. Technol., 54 (2019) 1387–1399.
- S. Hasan, A. Ghosh, K. Race, R. Schreiber Jr., M. Prelas,
Dispersion of FeOOH on chitosan matrix for simultaneous
removal of As(III) and As(V) from drinking water, Sep. Sci.
Technol., 49 (2014) 2863–2877.
- G.L. Zhang, M.A. Gomez, S.H. Yao, X. Ma, S.F. Li, X. Cao,
S.Y. Zang, Y.F. Jia, Systematic study on the reduction efficiency
of ascorbic acid and thiourea on selenate and selenite at
high and trace concentrations, Environ. Sci. Pollut. Res.,
26 (2019) 10159–10173.
- M. Xiao, Y.P. Zhao, S.F. Li, Facile synthesis of chrysanthemumlike
mesoporous α-FeOOH and its adsorptive behavior of
antimony from aqueous solution, J. Dispersion Sci. Technol.,
41 (2020) 1812–1820.
- S.K. Lagergren, About the theory of so-called adsorption
of soluble substances, Kungliga Svenska Vetensk Handl.,
24 (1898) 1–39.
- Y.S. Ho, G. McKay, A comparison of chemisorption kinetic
models applied to pollutant removal on various sorbents,
Process Saf. Environ. Prot., 76 (1998) 332–340.
- H.-T. Fan, Y. Sun, Q. Tang, W.-L. Li, T. Sun, Selective adsorption
of antimony(III) from aqueous solution by ion-imprinted
organic–inorganic hybrid sorbent: kinetics, isotherms and
thermodynamics, J. Taiwan Inst. Chem. Eng., 45 (2014)
2640–2648.
- S. Vasudevan, B.S. Kannan, J. Lakshmi, S. Mohanraj, G. Sozhan,
Effects of alternating and direct current in electrocoagulation
process on the removal of fluoride from water, J. Chem.
Technol. Biotechnol., 86 (2011) 428–436.
- S. Vasudevan, J. Lakshmi, G. Sozhan, Studies relating to removal
of arsenate by electrochemical coagulation: optimization,
kinetics, coagulant characterization, Sep. Sci. Technol., 45 (2010)
1313–1325.
- H.A. Taylor, N. Thon, Kinetics of chemisorption, J. Am.
Chem. Soc., 74 (1952) 4169–4173.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- H.-T. Fan, Q. Tang, Y. Sun, Z.-G. Zhang, W.-X. Li, Selective
removal of antimony(III) from aqueous solution using
antimony(III)-imprinted organic–inorganic hybrid sorbents
by combination of surface imprinting technique with sol–gel
process, Chem. Eng. J., 258 (2014) 146–156.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Über die adsorption in lösungen, Zeitschrift
fur Physikalische Chemie, 57 (1906) 385–470.
- M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physicochim. U.R.S.S., 12 (1940)
327–356.
- I. Mironyuk, T. Tatarchuk, H. Vasylyeva, V.M. Gun’ko,
I. Mykytyn, Effects of chemosorbed arsenate groups on the
mesoporous titania morphology and enhanced adsorption
properties towards Sr(II) cations, J. Mol. Liq., 282 (2019) 587–597.
- S. Vasudevan, J. Lakshmi, R. Vanathi, Electrochemical
coagulation for chromium removal: process optimization,
kinetics, isotherms and sludge characterization, Clean – Soil Air
Water, 38 (2010) 9–16.
- R. Kamaraj, A. Pandiarajan, R.M. Gandhi, A. Shibayama,
S. Vasudevan, Eco-friendly and easily prepared graphene
nanosheets for safe drinking water: removal of chlorophenoxyacetic
acid herbicides, ChemistrySelect, 2 (2017) 342–355.
- Y. Fu, J.Y. Wang, Q.X. Liu, H.B. Zeng, Water-dispersible
magnetic nanoparticle–graphene oxide composites for selenium
removal, Carbon, 77 (2014) 710–721.
- A.W. Lounsbury, J.S. Yamani, C.P. Johnston, P. Larese-Casanova, J.B. Zimmerman, The role of counter ions in nanohematite
synthesis: implications for surface area and selenium
adsorption capacity, J. Hazard. Mater., 310 (2016) 117–124.
- C.M. Gonzalez, J. Hernandez, J.G. Parsons, J.L. Gardea-Torresdey, A study of the removal of selenite and selenate from
aqueous solutions using a magnetic iron/manganese oxide
nanomaterial and ICP-MS, Microchem. J., 96 (2010) 324–329.
- S. Vasudevan, J. Lakshmi, G. Sozhan, Optimization of the
process parameters for the removal of phosphate from drinking
water by electrocoagulation, Desal. Water Treat., 12 (2009)
407–414.
- S. Vasudevan, J. Jayaraj, J. Lakshmi, G. Sozhan, Removal of iron
from drinking water by electrocoagulation: adsorption and
kinetics studies, Korean J. Chem. Eng., 26 (2009) 1058–1064.
- T. Hiemstra, R.P.J.J. Rietra, W.H. Van Riemsdijk, Surface
complexation of selenite on goethite: MO/DFT geometry and
charge distribution, Croat. Chem. Acta, 80 (2007) 313–324.
- Y.F. Jia, Y. Zheng, J.R. Lin, G.Q. Zhang, X. Ma, X. Wang,
S.F. Wang, Surface sorption site and complexation structure
of Ca2+ at the goethite–water interface: a molecular dynamics
simulation and quantitative XANES analysis, Bull. Environ.
Contam. Toxicol., 103 (2019) 64–68.