References

  1. I. Sówka, Methods of Identification of Odour Gases Emitted from Industrial Plants, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2011, (in Polish).
  2. U. Miller, A. Grzelka, E. Romanik, M. Kuriata, Analysis of the application of selected physicochemical methods in eliminating odor nuisance of municipal facilities, E3S Web Conf., 28 (2018) 01023, doi: 10.1051/e3sconf/20182801023.
  3. K. Ignatowicz, J. Piekarski, I. Skoczko, J. Piekutin, Analysis of simplified equations of adsorption dynamics of HCH, Desal. Water Treat., 57 (2016) 1420–1428.
  4. K. Ignatowicz, Sorption process for migration reduction of pesticides from graveyards, Arch. Environ. Prot., 34 (2008) 143–149.
  5. X. Chen, S. Jeyaseelan, N. Graham, Physical and chemical properties study of the activated carbon made from sewage sludge, Waste Manage., 22 (2002) 755–760.
  6. Y. Tang, Md. Samrat Alam, K.O. Konhauser, D.S. Alessi, S. Xu, W. Tian, Y. Liu, Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater, J. Cleaner Prod., 209 (2019) 927–936.
  7. H. Norouzi, D. Jafari, M. Esfandyari, Study on a new adsorbent for biosorption of cadmium ion from aqueous solution by activated carbon prepared from Ricinus communis, Desal. Water Treat., 191 (2020) 140–152.
  8. A. Rauf, T. Mahmud, M. Ashraf, R. Rehmana, S. Basharata, Sorption studies on removal of Cd2+ from the aqueous solution using fruit-peels of Litchi chinensis Sonn, Desal. Water Treat., 187 (2020) 277–286.
  9. S. Werle, M. Dudziak, S. Sobek, Water solution purification by phenol adsorption on solid fraction from thermal treatment of waste biomass - occurrences of unfavourable phenomenon, Desal. Water Treat., 186 (2020) 72–77.
  10. W.-K. Kim, T. Shim, Y.-S. Kim, S. Hyun, C. Ryu, Y.-K. Park, J. Jung, Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures, Bioresour. Technol., 138 (2013) 266–270.
  11. A. Bogusz, P. Oleszczuk, R. Dobrowolski, Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water, Bioresour. Technol., 196 (2015) 540–549.
  12. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  13. T. Chen, Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, L. Ren, Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge, Bioresour. Technol., 164 (2014) 47–54.
  14. N. Graham, X.G. Chen, S. Jayaseelan, The potential application of activated carbon from sewage sludge to organic dyes removal, Water Sci. Technol., 43 (2001) 245–252.
  15. Q. Wen, C. Li, Z. Cai, W. Zhang, H. Gao, L. Chen, G. Zeng, X. Shu, Y. Zhao, Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde, Bioresour. Technol., 102 (2011) 942–947.
  16. F-S. Zhang, J.O. Nriagu, H. Itoh, Mercury removal from water using activated carbons derived from organic sewage sludge, Water Res., 39 (2005) 389–395.
  17. I. Sówka, M. Szklarczyk, P.P. Zwoździak, J. Zwoździak, Gas deodorization, Ekologia Przemysłowa, 3 (2008) 58–61, (in Polish).
  18. A.H. Wani, R. Branion, A. Lau, Biofiltration: a promising and cost effective control technology for Odors, VOCs and air toxics, J. Environ. Sci. Health, 32 (1997) 2027–2055.
  19. M.A. Fulazzaky, A. Talaiekhozani, P. Mohanadoss, M.Z.A. Majid, T. Hadibarata, A. Goli, Biofiltration process as an ideal approach to remove pollutants from polluted air, Desal. Water Treat., 52 (2014) 3600–3615.
  20. J.M. Estrada, B. Kraakman, R. Munoz, R. Lebrero, A comparative analysis of odour treatment technologies in wastewater treatment plants, Environ. Sci. Technol., 45 (2011) 1100–1106.
  21. N. Le-Minh, E.C. Sivret, A. Shammay, R.M. Stuetz, Factors affecting the adsorption of gaseous environmental odors by activated carbon: a critical review, Crit. Rev. Env. Sci. Technol., 48 (2018) 341–375.
  22. L.M. Martin, G. Hernandez, Z. Montoya, J. Koranten-Amoako, L. Derry, D.J. Valles-Rosales, C.E. Brewer, Adsorption of Hydrogen Sulfide on Biochars from Pallet Wood Waste, ASABE Annual International Meeting 1900359, 2019, doi: 10.13031/aim.201900359.
  23. F. Li, H. Wang, Y. Zhang, Q. Wang, Preparation of desulfurizing activated carbon from corn stalk and characterization of desulfurizing structure, J. Environ. Eng. Landscape, 27 (2019) 33–40.
  24. M.J. Luján-Facundo, M.I. Iborra-Clar, J.A. Mendoza-Roca, M.I. Alcaina-Miranda, A.M. Maciá, C. Lardín, L. Pastor, J. Claros, Preparation of sewage sludge–based activated carbon for hydrogen sulphide removal, Water Air Soil Pollut., 231 (2020) 187.
  25. J. Xu, W. Dong, H. Wang, X. Huang, Adsorption characteristics of methyl mercaptan in odor by KMnO4 modified activated carbon, Chin. J. Environ. Eng., 14 (2020) 1570–1578.
  26. T. Hvitved-Jacobsen, J. Vollertsen, C. Yongsiri, A. Nielsen, S. Abdul-Talib, Sewer Microbial Processes, Emissions and Impacts, Proceedings from the 3rd International Conference on Sewer Processes and Networks, Paris, France, April 15–17, 2002, pp. 1–13.
  27. Y. Hwang, T. Matsuo, K. Hanaki, N. Suzuki, Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater, Water Res., 29 (1995) 711–718.
  28. J. Milik, R. Pasela, M. Szymczak, M. Chalamoński, Evaluation of the physico-chemical composition of sludge from municipal sewage treatment plant, Rocz. Ochr. Sr., 18 (2016) 579–590 (in Polish).
  29. E. Włodarczyk, M. Próba, L. Wolny, Comparison of test results for stabilized sewage sludge derived from storage yard and drying hall, Inżynieria i Ochrona Środowiska, 17 (2014) 473–481 (in Polish).
  30. J. Curyło, H. Rybak, Characteristics of the domestic wax melted from beeswax and the wax extracted from slumgum with trichlorethylene (TRI), Pszczelnicze Zeszyty Naukowe, XVI (1972) 153–162 (in Polish).
  31. P. Semkiw, P. Skubida, K. Jeziorski, A. Pioś, The Beekeeping Sector in Poland, Instytut Ogrodnictwa, Zakład Pszczelarstwa w Puławach, 2018, (in Polish).
  32. H. Lu, W. Zhang, S. Wang, L. Zhuang, Y. Yang, R. Qiu, Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures, J. Anal. Appl. Pyrolysis, 102 (2013) 137–143.
  33. Y. Lee, J. Park, C. Ryu, K.S. Gang, W. Yang, Y-K. Park, J. Jung, S. Hyun, Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C, Bioresour. Technol., 148 (2013) 196–201.
  34. D. Angın, Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake, Bioresour. Technol., 128 (2013) 593–597.
  35. A. Shaaban, S-M. Se, M.F. Dimin, J.M. Juoi, M.H.M. Husin, N.M.M. Mitan, Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis, J. Anal. Appl. Pyrolysis, 107 (2014) 31–39.
  36. PN-EN 13725:2007, Air Quality. Determination of Odor Concentration by Dynamic Olfactometry, (in Polish).
  37. J. Piekarski, T. Dąbrowski, Analysis of simplified equations of the dynamics of adsorption, J. Ecol. Eng., 24 (2011) 32–39 (in Polish).
  38. W. Dąbrowski, R. Żyłka, P. Malinowski, Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant, Environ. Res., 153 (2017) 135–139.