References
- G.E.P. Box, K.B. Wilson, On the experimental attainment
of optimum conditions, J. R. Stat. Soc. Ser. B Methodol.,
13 (1951) 1–45.
- B. Shailendra, S.K. Gupta, D. Apurba, M.K. Jha, V. Bajpai, S. Joshi,
A. Gupta, Application of central composite design approach
for removal of chromium(VI) from aqueous solution using
weakly anionic resin: modeling, optimization, and study of
interactive variables, J. Hazard. Mater., 227–228 (2012) 436–444.
- S. Sugashini, S.B.K.M. Meera, Column adsorption studies for
the removal of Cr(VI) ions by ethylamine modified chitosan
carbonized rice husk composite beads with modelling
and optimization, J. Chem., 2013 (2013) 1–11, https://doi.
org/10.1155/2013/460971.
- A.N. Siyal, S.Q. Memon, M.I. Khaskheli, Optimization and
equilibrium studies of Pb(II) removal by Grewia Asiatica seed:
a factorial design approach, Pol. J. Chem. Technol., 14 (2012)
71–77.
- M.B. Baskan, A. Pala, A statistical experiment design approach
for arsenic removal by coagulation process using aluminum
sulfate, Desalination, 254 (2010) 42–48.
- Z. Javad, S. Ali, R.S. Mohammad, Optimization of Pb(II)
biosorption by Robinia tree leaves using statistical design of
experiments, Talanta, 76 (2008) 528–532.
- S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos,
J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal,
P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box–Behnken
design: an alternative for the optimization of analytical
methods, Anal. Chim. Acta, 597 (2007) 179–186.
- M. Iqbal, Vicia faba bioassay for environmental toxicity
monitoring: a review, Chemosphere, 144 (2016) 785–802.
- M. Iqbal, M. Abbas, A. Nazir, Bioassays based on higher plants
as excellent dosimeters for ecotoxicity monitoring: a review,
Chem. Int., 5 (2019) 1–80.
- M. Abbas, M. Adil, S. Ehtisham-ul-Haque, B. Munir, M. Yameen,
A. Ghaffar, G.A. Shar, M.A. Tahir, M. Iqbal, Vibrio fischeri
bioluminescence inhibition assay for ecotoxicity assessment:
a review, Sci. Total Environ., 626 (2018) 1295–1309.
- G. Blázquez, F. Hernáinz, M. Calero, M.A. Martín-
Lara, G. Tenorio, The effect of pH on the biosorption of
Cr(III) and Cr(VI) with olive stone, Chem. Eng. J., 148 (2009)
473–479.
- M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite
efficiency for Cr(VI) adsorption: kinetic, equilibrium
and thermodynamics studies, J. Environ. Chem. Eng., 5 (2017)
400–411.
- N. Priyantha, L.B.L. Lim, S. Wickramasooriya, Adsorption
behaviour of Cr(VI) by Muthurajawela peat, Desal. Water
Treat., 57 (2015) 16592–16600.
- M. Wang, W.Q. Yan, M.L. Chu, T. Li, Z.Y. Liu, Y.Q. Yu,
Y.Y. Huang, T.Y. Zhu, M. Wan, C. Mao, D.Q. Shi, Erythrocyte
membrane-wrapped magnetic nanotherapeutic agents for
reduction and removal of blood Cr(VI), ACS Appl. Mater.
Interfaces, 12 (2020) 28014–28023.
- G. Bayramoglu, M.Y. Arica, Synthesis of Cr(VI)-imprinted
poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles:
its adsorption propensity to Cr(VI), J. Hazard. Mater.,
187 (2011) 213–221.
- Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A.P. Riwu, M. Iqbal,
H. Darmokoesoemo, H.S. Kusuma, The adsorption of
Cr(VI) from water samples using graphene oxide-magnetic
(GO-Fe3O4) synthesized from natural cellulose-based graphite
(kusambi wood or Schleichera oleosa): study of kinetics,
isotherms and thermodynamics, J. Mater. Res. Technol., 9 (2020)
6544–6556.
- L.C. Li, Y.L. Xu, D.J. Zhong, Highly efficient adsorption and
reduction of Cr(VI) ions by a core–shell Fe3O4@UiO-66@
PANI composite, J. Phys. Chem. A, 124 (2020) 2854–2862.
- M. Barjasteh-Moghaddam, A. Habibi-Yangjeh, Preparation
of Cd(OH)2 nanostructures in water using a simple refluxing
method and their photocatalytic activity, J. Iran Chem. Soc.,
9 (2012) 163–169.
- F.R. Costa, A. Leuteritz, U. Wagenknecht, D. Jehnichen,
L. Häußler, G. Heinrich, Intercalation of Mg–Al layered
double hydroxide by anionic surfactants: preparation and
characterization, Appl. Clay Sci., 38 (2008) 153–164.
- M.R. Pérez, I. Pavlovic, C. Barriga, J. Cornejo, M.C. Hermosín,
M.A. Ulibarri, Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered
double hydroxide intercalated with EDTA, Appl. Clay Sci.,
32 (2006) 245–251.
- W.H. Li, A. Liu, H.W. Tian, D.P. Wang, Controlled release of
nitrate and molybdate intercalated in Zn-Al-layered double
hydroxide nanocontainers towards marine anticorrosion
applications, Colloid Interface Sci. Commun., 24 (2018) 18–23.
- L.A. Saghatforoush, S. Sanati, R. Mehdizadeh, M. Hasanzadeh,
Solvothermal synthesis of Cd(OH)2 and CdO nanocrystals and
application as a new electrochemical sensor for simultaneous
determination of norfloxacin and lomefloxacin, Superlattices
Microstruct., 52 (2012) 885–893.
- P.F. Fato, L. Da-Wei, Z. Li-Jun, Q. Kaipei, L. Yi-Tao, Simultaneous
removal of multiple heavy metal ions from river water using
ultrafine mesoporous magnetite nanoparticles, ACS Omega,
4 (2019) 7543–7549.
- S.H. Hasan, P. Srivastava, M. Talat, Biosorption of Pb(II) from
water using biomass of Aeromonas hydrophila: central composite
design for optimization of process variables, J. Hazard. Mater.,
168 (2009) 1155–1162.
- I.A. Bhatti, N. Ahmad, N. Iqbal, M. Zahid, M. Iqbal, Chromium
adsorption using waste tire and conditions optimization by
response surface methodology, J. Environ. Chem. Eng., 5 (2017)
2740–2751.
- D.M. Ruthven, Principles of Adsorption and Adsorption
Processes, Wiley, New York, 1984.
- S.Q. Memon, S.M. Hasany, M.I. Bhanger, M.Y. Khuhawar,
Enrichment of Pb(II) ions using phthalic acid functionalized
XAD-16 resin as a sorbent, J. Colloid Interface Sci., 291 (2005)
84–91.
- D. Kundu, S.K. Mondal, T. Banerjee, Development of
β-cyclodextrin-cellulose/hemicellulose-based hydrogels for
the removal of Cd(II) and Ni(II): synthesis, kinetics, and
adsorption aspects, J. Chem. Eng. Data, 64 (2019) 2601–2617.
- N.T.R.N. Kumara, N. Hamdan, M.I. Petra, K.U. Tennakoon,
P. Ekanayake, Equilibrium isotherm studies of adsorption
of pigments extracted from Kuduk-kuduk (Melastoma
malabathricum L.) pulp onto TiO2 nanoparticles, J. Chem.,
2014 (2014) 1–6, https://doi.org/10.1155/2014/468975.
- M. Yadav, N.K. Singh, Isotherm investigation for the sorption
of fluoride onto Bio-F: comparison of linear and non-linear
regression method, Appl. Water Sci., 7 (2017) 4793–4800.
- Y.J. Li, B.Y. Gao, T. Wu, D.J. Sun, X. Li, B. Wang, F.J. Lu,
Hexavalent chromium removal from aqueous solution by
adsorption on aluminum magnesium mixed hydroxide,
Water Res., 43 (2009) 3067–3075.
- N.K. Lazaridis, T.A. Pandi, K.A. Matis, Chromium(VI)
removal from aqueous solutions by Mg−Al−CO3 hydrotalcite:
sorption–desorption kinetic and equilibrium studies, Ind. Eng.
Chem. Res., 43 (2004) 2209–2215.
- C.S. Lei, X.F. Zhu, B.C. Zhu, C.J. Jiang, Y. Le, J.G. Yu, Superb
adsorption capacity of hierarchical calcined Ni/Mg/Al layered
double hydroxides for Congo red and Cr(VI) ions, J. Hazard.
Mater., 321 (2017) 801–811.
- Y. Lu, B. Jiang, L. Fang, F.L. Ling, J.M. Gao, F. Wu, X.H. Zhang,
High performance NiFe layered double hydroxide for methyl
orange dye and Cr(VI) adsorption, Chemosphere, 152 (2016)
415–422.
- H.-P. Chao, Y.-C. Wang, N.T. Hai, Removal of hexavalent
chromium from groundwater by Mg/Al-layered double
hydroxide s using characteristics of in-situ synthesis, Environ.
Pollut., 243 (2018) 620–629.
- S.X. Chen, Y.F. Huang, X.X. Han, Z.L. Wu, C. Lai, J. Wang,
Q. Deng, Z.L. Zeng, S.G. Deng, Simultaneous and efficient
removal of Cr(VI) and methyl orange on LDHs decorated
porous carbons, Chem. Eng. J., 352 (2018) 306–315.
- N. Kumar, L. Reddy, V. Parashar, J.C. Ngila, Controlled synthesis
of microsheets of ZnAl layered double hydroxides hexagonal
nanoplates for efficient removal of Cr(VI) ions and anionic
dye from water, J. Environ. Chem. Eng., 5 (2017) 1718–1731.
- W.W. Wang, J.B. Zhou, G. Achari, J.G. Yu, W.Q. Cai, Cr(VI)
removal from aqueous solutions by hydrothermal synthetic
layered double hydroxides: adsorption performance, coexisting
anions and regeneration studies, Colloids Surf., A, 457 (2014)
33–40.
- F.L. Ling, L. Fang, Y. Lu, J.M. Gao, F. Wu, M. Zhou, B.S. Hu,
A novel CoFe layered double hydroxides adsorbent: high
adsorption amount for methyl orange dye and fast removal
of Cr(VI), Microporous Mesoporous Mater., 234 (2016) 230–238.
- M. Khitous, Z. Salem, D. Halliche, Effect of interlayer anions on
chromium removal using Mg–Al layered double hydroxides:
kinetic, equilibrium and thermodynamic studies, Chin. J.
Chem. Eng., 24 (2016) 433–445.
- T. Kameda, E. Kondo, T. Yoshioka, Treatment of Cr(VI)
in aqueous solution by Ni–Al and Co–Al layered double
hydroxides: equilibrium and kinetic studies, J. Water Process
Eng., 8 (2015) e75–e80.
- N. Jarrah, N.D. Mu’azu, M. Zubair, M. Al-Harthi, Enhanced
adsorptive performance of Cr(VI) onto layered double
hydroxide-bentonite composite: isotherm, kinetic and
thermodynamic studies, Sep. Sci. Technol., 55 (2020) 897–1909.
- X.Y. Yuan, Y.F. Wang, J. Wang, C. Zhou, Q. Tang, X.B. Rao,
Calcined graphene/MgAl-layered double hydroxides for
enhanced Cr(VI) removal, Chem. Eng. J., 221 (2013) 204–213.
- L. Deng, Z. Shi, L. Wang, S.Q. Zhou, Fabrication of a novel
NiFe2O4/Zn-Al layered double hydroxide intercalated with
EDTA composite and its adsorption behavior for Cr(VI) from
aqueous solution, J. Phys. Chem. Solids, 104 (2017) 79–90.
- L. Deng, Z. Shi, X.X. Peng, Adsorption of Cr(VI) onto a magnetic
CoFe2O4/MgAl-LDH composite and mechanism study, RSC
Adv., 5 (2015) 49791–49801.
- P. Koilraj, K. Sasaki, Eco-friendly alkali-free arginineassisted
hydrothermal synthesis of different layered double
hydroxides and their chromate adsorption/reduction efficiency,
ChemistrySelect, 2 (2017) 10459–10469.
- K. Zhu, Y. Gao, X.L. Tan, C.L. Chen, Polyaniline-modified Mg/Al layered double hydroxide composites and their application
in efficient removal of Cr(VI), ACS Sustainable Chem. Eng.,
4 (2016) 4361–4369.