References

  1. M.E. Lee, J.H. Park, J.W. Chung, Comparison of the lead and copper adsorption capacities of plant source materials and their biochars, J. Environ. Manage., 236 (2019) 118–124.
  2. S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Cleaner Prod., 230 (2019) 783–793.
  3. S. Debnath, U.C. Ghosh, Kinetics: isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide, J. Chem. Thermodyn., 40 (2008) 67–77.
  4. Y. Ding, D. Jing, H. Gong, L. Zhou, X. Yang, Biosorption of aquatic cadmium(II) by unmodified rice straw, Bioresour. Technol., 114 (2012) 20–25.
  5. T.S. Anirudhan, S.S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons, J. Environ. Sci., 23 (2011) 1989–1998.
  6. J. Hosseini, E. Nazarzadeh, D. Ajloo, Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(aniline-co-pyrrole) nanospheres, J. Mol. Liq., 296 (2019) 111789.
  7. Y. Jin, C. Zeng, Q. Lv, Y. Yu, Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicyclic acid modified lignin, Int. J. Biol. Macromol., 123 (2019) 50–58.
  8. W. Yang, Z. Wang, S. Song, J. Han, H. Chen, X. Wang, R. Sun, J. Cheng, Adsorption of copper(II) and lead(II) from seawater using hydrothermal biochar derived from Enteromorpha, Mar. Pollut. Bull., 149 (2019) 110586.
  9. K. Tomasz, K. Anna, C. Ryszard, Effective adsorption of lead ions using fly ash obtained in the novel circulating fluidized bed combustion technology, Microchem. J., 145 (2019) 1011–1025.
  10. S. Zhang, Q. Shi, C. Christodoulatos, X. Meng, Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: batch, spectroscopic, and modeling study, Chemosphere, 233 (2019) 405–413
  11. A.H. El-Sheikh, F.S. Nofal, M.H. Shtaiwi, Adsorption and magnetic solid-phase extraction of cadmium and lead using magnetite modified with schiff bases, J. Environ. Chem. Eng., 7 (2019) 103229.
  12. S. Mohan, V. Kumar, D.K. Singh, S.H. Hasan, Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption, J. Environ. Chem. Eng., 5 (2017) 2259–2273.
  13. H. Wang, H. Shang, X. Sun, L. Hou, M. Wen, Y. Qiao, Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead(II) ion, Colloids Surf. A, (in press) https://doi.org/10.1016/j.colsurfa.2019.124139.
  14. S. Wang, W. Gong, X. Liu, Y. Yao, B. Gao, Q. Yue, Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol., 58 (2007) 17–23.
  15. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes, Sep. Purif. Methods, 43 (2014) 311–338.
  16. G. Mamba, X.Y. Mbianda, P.P. Govender, Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: synthesis, characterization and potential application in water purification, Carbohydr. Polym., 98 (2013) 470–476.
  17. Y. Tian, P. Yin, R. Qu, C. Wang, H. Zheng, Z. Yu, Removal of transition metal ions from aqueous solutions by adsorption using a novel hybrid material silica gel chemically modified by triethylenetetraminomethylenephosphonic acid, Chem. Eng. J., 162 (2010) 573–579.
  18. N.M. Bandaru, N. Reta, H. Dalal, A.V. Ellis, J. Shapter, N.H. Voelcker, Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes, J. Hazard. Mater., 261 (2013) 534–541.
  19. K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, K. Ueda, Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin, J. Hazard. Mater., 146 (2007) 39–50.
  20. T.S. Anirudhan, P.G. Radhakrishnan, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40 (2008) 702–709.
  21. A. Mehdinia, S. Heydari, A. Jabbari, Synthesis and characterization of reduced graphene oxide-Fe3O4@polydopamine and application for adsorption of lead ions: isotherm and kinetic studies, Mater. Chem. Phys., 239 (2020) 121964.
  22. J. Kończyk, S. Żarska, W. Ciesielski, Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: kinetic, mechanism, and thermodynamic studies, Colloid Surf. A, 575 (2019) 271–282.
  23. R.A. Jacques, E.C. Lima, S.L.P. Dias, A.C. Mazzocato, F.A. Pavan, Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution, Sep. Purif. Technol., 57 (2007) 193–198.
  24. M.R. Awual, M.M. Hasan, A ligand based innovative composite material for selective lead(II) capturing from wastewater, J. Mol. Liq., 294 (2019) 111679.
  25. A.M. Hassan, W.A.W. Ibrahim, M.B. Bakar, M.M. Sanagi, Z.A. Sutirman, H.R. Nodeh, M.A. Mokhter, New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment, J. Environ. Manage., 253 (2020) 109658.
  26. S. Tiwari, A. Hasan, L.M. Pandey, A novel bio-sorbent comprising encapsulated Agrobacterium fabrum(SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb(II), J. Environ. Chem. Eng., 5 (2017) 442–452.
  27. M. El-Sayeda, A.A. Nada, Polyethylenimi−functionalized amorphous carbon fabricated from oil palm leaves as a novel adsorbent for Cr(VI) and Pb(II) from aqueous solution, J. Water Process Eng., 16 (2017) 296–308.
  28. D. Afzali, M. Fayazi, Deposition of MnO2 nanoparticles on the magnetic halloysite nanotubes by hydrothermal method for lead(II) removal from aqueous solutions, J. Taiwan Inst. Chem. Eng., 63 (2016) 421–429.
  29. M. Naushad, Z.A. ALOthman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  30. A.A.H. Faisal, S.F.A. Al-Wakelb, H.A. Assib, L.A. Najia, M. Naushad, Waterworks sludge-filter sand permeable reactive barrier for removal of toxic lead ions from contaminated groundwater, J. Water Process Eng., 33 (2020) 101112.
  31. Q. Zeng, Y. Huang, L. Huang, L. Hu, W. Sun, H. Zhong, Z. He, High adsorption capacity and super selectivity for Pb(II) by a novel adsorbent: nano humboldtine/almandine composite prepared from natural almandine, Chemosphere, 253 (2020) 126650.
  32. F. An, R. Wu, M. Li, T. Hu, J. Gao, Z. Yuan, Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: kinetics, isotherms and thermodynamics, React. Funct. Polym., 118 (2017) 42–50.
  33. A. Dean, D. Voss, D. Draguljić, Design and Analysis of Experiments, Springer International Publishing, Cham, 2017, pp. 565–614.
  34. R. Bardestani, C. Roy, S. aliaguine, The effect of biochar mild air oxidation on the optimization of lead(II) adsorption from wastewater, J. Environ. Manage., 240 (2019) 404–420.
  35. K. Yang, Z. Lou, R. Fu, J. Zhou, J. Xu, S.A. Baig, X. Xu, Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal: comparison and mechanism study, J. Mol. Liq., 260 (2018) 149–158.