References

  1. M. Iqbal, M. Abbas, A. Nazir, Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review, Chem. Int., 5 (2019) 1–80.
  2. H.X. Wang, G.Z. Li, A. Fakhri, Fabrication and structural of the Ag2S-MgO/graphene oxide nanocomposites with high photocatalysis and antimicrobial activities, J. Photochem. Photobiol., B, 207 (2020) 111882, https://doi.org/10.1016/j. jphotobiol.2020.111882.
  3. G.L. Wang, A. Fakhri, Preparation of CuS/polyvinyl alcoholchitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G– bacteria, Int. J. Biol. Macromol., 155 (2020) 36–41.
  4. M. Iqbal, Vicia faba bioassay for environmental toxicity monitoring: a review, Chemosphere, 144 (2016) 785–802.
  5. M. Lu, Y.X. Cui, S.X. Zhao, A. Fakhri, Cr2O3/cellulose hybrid nanocomposites with unique properties: facile synthesis, photocatalytic, bactericidal and antioxidant application, J. Photochem. Photobiol., B, 205 (2020) 111842, https://doi. org/10.1016/j.jphotobiol.2020.111842.
  6. A.M.K. Pasha, M. Hosseini, A. Fakhri, V.K. Gupta, S. Agarwa, Investigation of photocatalytic process for iron disulfide-bismuth oxide nanocomposites by using response surface methodology: structural and antibacterial properties, J. Mol. Liq., 289 (2019) 110950, https://doi.org/10.1016/j.molliq.2019.110950.
  7. A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, N. Sadeghi, S. Tahami, Preparation and characterization of WS2 decorated and immobilized on chitosan and polycaprolactone as biodegradable polymers nanofibers: photocatalysis study and antibiotic-conjugated for antibacterial evaluation, Int. J. Biol. Macromol., 120 (2018) 1789–1793.
  8. H. Pan, H.X. Xie, G. Chen, N.B. Xu, M.M. Wang, A. Fakhri, Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with enhanced ultraviolet light photocatalysis activity, antibacterial and antioxidant studies, Int. J. Biol. Macromol., 148 (2020) 608–614.
  9. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36 (2010) 327–363.
  10. H. Katsumata, Y. Oda, S. Kaneco, T. Suzuki, Photocatalytic activity of Ag/CuO/WO3 under visible-light irradiation, RSC Adv., 3 (2013) 5028–5035.
  11. X.J. Li, Z.J. Zhang, A. Fakhri, V.K. Gupta, S. Agarwal, Adsorption and photocatalysis assisted optimization for drug removal by chitosan-glyoxal/polyvinylpyrrolidone/MoS2 nanocomposites, Int. J. Biol. Macromol., 136 (2019) 469–475.
  12. N. Mahrez, S. Bendenia, K. Marouf-Khelifa, I. Batonneau-Gener, A. Khelifa, Improving of the adsorption capacity of halloysite nanotubes intercalated with dimethyl sulfoxide, Compos. Interfaces, 22 (2015) 403–417.
  13. J. Fu, Y.-J. Chen, J.-Y. Ju, Q.-S. Li, S.-Q. An, H.-L. Zhu, Treating dye wastewater of reactive brilliant red K-2BP by cetyltrimethylammonium chloride-modified bentonite with polyacrylamide flocculant, Pol. J. Stud. Environ., 20 (2011) 61–66.
  14. D.L. Guerra, C. Airoldi, Anchored thiol smectite clay—kinetic and thermodynamic studies of divalent copper and cobalt adsorption, J. Solid State Chem., 181 (2008) 2507–2515.
  15. A.M. Awwad, M.W. Amer, M.M. Al-Aqarbeh, TiO2-kaolinite nanocomposite prepared from the Jordanian kaolin clay: adsorption and thermodynamics of Pb(II) and Cd(II) ions in aqueous solution, Chem. Int., 6 (2020) 168–178.
  16. E.C. Jennifer, O.P. Ifedi, Modification of natural bentonite clay using cetyl trimetyl-ammonium bromide and its adsorption capability of some petrochemical wastes, Chem. Int., 5 (2019) 269–273.
  17. J. da Silva Favero, V. dos Santos, V. Weiss-Angeli, L.B. Gomes, D.G. Veras, N. Dani, A.S. Mexias, C.P. Bergmann, Evaluation and characterization of Melo Bentonite clay for cosmetic applications, Appl. Clay Sci., 175 (2019) 40–46.
  18. D. Kurnosov, A. Burakov, I. Burakova, Development of a bentonite clay/carbon nanotubes composite for liquid-phase adsorption, Mater. Today Proc., 11 (2019) 398–403.
  19. F. Bergaya, B.K.G. Theng, G. Lagaly, Chapter 7 – Modified Clays and Clay Minerals, F. Bergaya, B.K.G. Theng, G. Lagaly, Eds., Handbook of Clay Science, Elsevier, Amsterdam, 2006, pp. 393–422.
  20. R.B. Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese, Chapter 2 – An Overview of Polymer–Clay Nanocomposites, K. Jlassi, M.M. Chehimi, S. Thomas, Eds., Clay-Polymer Nanocomposites, Elsevier, Amsterdam, The Netherlands, 2017, pp. 29–81.
  21. L. Nikolic, I. Ristic, S. Stojiljkovic, Z. Vukovic, D. Stojiljkovic, V. Nikolic, J. Budinski-Simendic, The influence of montmorillonite modification on the properties of composite material based on poly(methacrylic acid), J. Compos. Mater., 46 (2011) 921–928.
  22. N. Ozturk, A. Tabak, S. Akgol, A. Denizli, Newly synthesized montmorillonite–histidine (Bent–Hist) microcomposite affinity sorbents for IgG adsorption, Colloids Surf., A, 301 (2007) 490.
  23. C.H. Zhou, D.S. Tong, W.H. Yu, Chapter 7 – Smectite Nanomaterials: Preparation, Properties, and Functional Applications, A.Q. Wang, W.B. Wang, Eds., Nanomaterials from Clay Minerals A New Approach to Green Functional Materials: A Volume in Micro and Nano Technologies, Elsevier, Amsterdam, The Netherlands, 2019, pp. 335–364.
  24. M. Huskić, A. Anžlovar, M. Žigon, Montmorillonite–phenolic resin nanocomposites prepared by one-step in-situ intercalative polymerisation, Appl. Clay Sci., 101 (2014) 484–489.
  25. A. Berrazoum, R. Marouf, F. Ouadjenia, J. Schott, Bioadsorption of a reactive dye from aqueous solution by municipal solid waste, Biotechnol. Rep. (Amst), 7 (2015) 44–50.
  26. S. Lagergren, Zur theorie der sogenannten adsorption gelosterstoffe (About the theory of so-called adsorption of soluble substances), Kungliga Svenska Vetenskapsademiens Handlingar (K. Sven. Vetenskapsakad. Handl.), 24 (1898) 1–39.
  27. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  28. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., 89 (1963) 31–59.
  29. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  30. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  31. O. Hamdaoui, E. Naffrechoux, Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters, J. Hazard. Mater., 147 (2007) 401–411.
  32. F. Zahaf, N. Dali, R. Marouf, F. Ouadjenia, J. Schott, Application of hydroxy-aluminum- and cetyltrimethylammonium bromideintercalated bentonite for removing acid and reactive dyes, Desal. Water Treat., 57 (2015) 21045–21053.
  33. N. Boudouara, N. Dali, R. Marouf, F. Ouadjenia, J. Schott, Removal of Chlorothalonil from water by a bentonite treated chemically, J. Mater. Environ. Sci., 12 (2017) 4523–4531.
  34. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid, J. Mater. Res., 8 (1993) 1179–1184.
  35. P.B. Messersmith, E.P. Giannelis, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6 (1994) 1719–1725.
  36. R.L. Frost, J. Kristof, E. Horvath, J.T. Kloprogge, Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K, J. Colloid Interface Sci., 226 (2000) 318–327.
  37. R.L. Frost, J. Kristof, G.N. Paroz, J.T. Kloprogge, Role of water in the intercalation of kaolinite with hydrazine, J. Colloid Interface Sci., 208 (1998) 216–225.
  38. M.J. Wilson, Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, Chapman & Hall, London, 1995.
  39. I. Poljanšek, M. Krajnc, Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR Spectroscopy, Acta Chim. Slov., 52 (2005) 238–244.
  40. I. Humelnicu, A. Băiceanu, M.-E. Ignat, V. Dulman, The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: kinetics and thermodynamics, Process Saf. Environ. Prot., 105 (2017) 274–287.
  41. C.G. Chen, T.B. Tolle, Fully exfoliated layered silicate epoxy nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 42 (2004) 3981–3986.
  42. I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf., A, 264 (2005) 17–28.
  43. S. Kadi, S. Lellou, K. Marouf-Khelifa, J. Schott J, A. Khelifa, Cadmium(II) and lead(II) removal from aqueous solutions by heat-treated Algerian halloysite, Desal. Water Treat., 113 (2018) 213–226.
  44. Z. Rawajfih, N. Nsour, Thermodynamic analysis of sorption isotherms of chromium(VI) anionic species on reed biomass, J. Chem. Thermodyn., 40 (2008) 846–851.
  45. F.A. Batzias, D.K. Sidiras, Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixedbed systems, J. Hazard. Mater., 149 (2007) 8–17.
  46. K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium, Colloids Surf., A, 317 (2008) 71–79.
  47. A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci., 7 (2017) 543–568.
  48. A. Kausar, K. Naeem, T. Hussain, Zill-i-Huma Nazli, H.N. Bhatti, F. Jubeen, A. Nazir, M. Iqbal, Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods, J. Mater. Res. Technol., 8 (2019) 1161–1174.
  49. S. Lellou, S. Kadi, L. Guemou, J. Schott, H. Benhebal, Study of methylene blue adsorption by modified kaolinite by dimethyl sulfoxide, Ecol. Chem. Eng. S, 27 (2020) 225–239.
  50. B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin, J. Hazard. Mater., 161 (2009) 387–395.
  51. M. Yazdanshenas, K. Farizadeh, A. Fazilat, S. Ahmadi, Adsorption of Basic Blue 41 from aqueous solution onto coconut fiber particles, J. Appl. Chem. Res., 2 (2014) 15–28.
  52. M. Zarezadeh-Mehrizi, A. Badiei, Highly efficient removal of Basic Blue 41 with nanoporous silica, Water Sci. Ind., 5 (2014) 49–57.
  53. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 973 (1960) 3973–3993.
  54. M.A. Hossain, M. Mohibullah, Kinetics and thermodynamics of adsorption of Basic Blue 41 on used black tea leaves, Int. J. Sci. Eng. Res., 8 (2017) 995–1002.
  55. N.Sh. El-Gendy, R.A. El-Salamony, S.S. Abu Amr, H.N. Nassar, Statistical optimization of Basic Blue 41 dye biosorption by Saccharomyces cerevisiae spent waste biomass and photo-catalytic regeneration using acid TiO2 hydrosol, J. Water Process Eng., 6 (2015) 193–202.
  56. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
  57. F. Kooli, Y. Liu, R. Al-Faze, A. Al Suhaimi, Effect of acid activation of Saudi local clay mineral on removal properties of Basic Blue 41 from an aqueous solution, Appl. Clay Sci., 116–117 (2015) 23–30.
  58. S. Afshin, S.A. Mokhtari, M. Vosoughi, H. Sadeghi, Y. Rashtbari, Data of adsorption of Basic Blue 41 dye from aqueous solutions by activated carbon prepared from filamentous algae, Data Brief, 21 (2018) 1008–1013.
  59. Y.H. Jiang, Y.Y. Luo, F.M. Zhang, L.Q. Guo, L. Ni, Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2 microspheres, Appl. Surf. Sci., 273 (2013) 448–456.
  60. M.J. Jaycock, G.D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Onichester, 1981, p. 625.
  61. S.S. Gupta, K.G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manage., 87 (2008) 46–58.