References
- M. Iqbal, M. Abbas, A. Nazir, Bioassays based on higher plants
as excellent dosimeters for ecotoxicity monitoring: a review,
Chem. Int., 5 (2019) 1–80.
- H.X. Wang, G.Z. Li, A. Fakhri, Fabrication and structural of
the Ag2S-MgO/graphene oxide nanocomposites with high
photocatalysis and antimicrobial activities, J. Photochem.
Photobiol., B, 207 (2020) 111882, https://doi.org/10.1016/j.
jphotobiol.2020.111882.
- G.L. Wang, A. Fakhri, Preparation of CuS/polyvinyl alcoholchitosan
nanocomposites with photocatalysis activity and
antibacterial behavior against G+/G– bacteria, Int. J. Biol.
Macromol., 155 (2020) 36–41.
- M. Iqbal, Vicia faba bioassay for environmental toxicity
monitoring: a review, Chemosphere, 144 (2016) 785–802.
- M. Lu, Y.X. Cui, S.X. Zhao, A. Fakhri, Cr2O3/cellulose hybrid
nanocomposites with unique properties: facile synthesis,
photocatalytic, bactericidal and antioxidant application,
J. Photochem. Photobiol., B, 205 (2020) 111842, https://doi.
org/10.1016/j.jphotobiol.2020.111842.
- A.M.K. Pasha, M. Hosseini, A. Fakhri, V.K. Gupta, S. Agarwa,
Investigation of photocatalytic process for iron disulfide-bismuth
oxide nanocomposites by using response surface methodology:
structural and antibacterial properties, J. Mol. Liq., 289 (2019)
110950, https://doi.org/10.1016/j.molliq.2019.110950.
- A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, N. Sadeghi,
S. Tahami, Preparation and characterization of WS2 decorated
and immobilized on chitosan and polycaprolactone as
biodegradable polymers nanofibers: photocatalysis study
and antibiotic-conjugated for antibacterial evaluation, Int.
J. Biol. Macromol., 120 (2018) 1789–1793.
- H. Pan, H.X. Xie, G. Chen, N.B. Xu, M.M. Wang, A. Fakhri, Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with
enhanced ultraviolet light photocatalysis activity, antibacterial
and antioxidant studies, Int. J. Biol. Macromol., 148 (2020)
608–614.
- M. Ahmaruzzaman, A review on the utilization of fly ash, Prog.
Energy Combust. Sci., 36 (2010) 327–363.
- H. Katsumata, Y. Oda, S. Kaneco, T. Suzuki, Photocatalytic
activity of Ag/CuO/WO3 under visible-light irradiation,
RSC Adv., 3 (2013) 5028–5035.
- X.J. Li, Z.J. Zhang, A. Fakhri, V.K. Gupta, S. Agarwal, Adsorption
and photocatalysis assisted optimization for drug removal by
chitosan-glyoxal/polyvinylpyrrolidone/MoS2 nanocomposites,
Int. J. Biol. Macromol., 136 (2019) 469–475.
- N. Mahrez, S. Bendenia, K. Marouf-Khelifa, I. Batonneau-Gener,
A. Khelifa, Improving of the adsorption capacity of halloysite
nanotubes intercalated with dimethyl sulfoxide, Compos.
Interfaces, 22 (2015) 403–417.
- J. Fu, Y.-J. Chen, J.-Y. Ju, Q.-S. Li, S.-Q. An, H.-L. Zhu,
Treating dye wastewater of reactive brilliant red K-2BP by
cetyltrimethylammonium chloride-modified bentonite with
polyacrylamide flocculant, Pol. J. Stud. Environ., 20 (2011)
61–66.
- D.L. Guerra, C. Airoldi, Anchored thiol smectite clay—kinetic
and thermodynamic studies of divalent copper and cobalt
adsorption, J. Solid State Chem., 181 (2008) 2507–2515.
- A.M. Awwad, M.W. Amer, M.M. Al-Aqarbeh, TiO2-kaolinite
nanocomposite prepared from the Jordanian kaolin clay:
adsorption and thermodynamics of Pb(II) and Cd(II) ions in
aqueous solution, Chem. Int., 6 (2020) 168–178.
- E.C. Jennifer, O.P. Ifedi, Modification of natural bentonite clay
using cetyl trimetyl-ammonium bromide and its adsorption
capability of some petrochemical wastes, Chem. Int., 5 (2019)
269–273.
- J. da Silva Favero, V. dos Santos, V. Weiss-Angeli, L.B. Gomes,
D.G. Veras, N. Dani, A.S. Mexias, C.P. Bergmann, Evaluation
and characterization of Melo Bentonite clay for cosmetic
applications, Appl. Clay Sci., 175 (2019) 40–46.
- D. Kurnosov, A. Burakov, I. Burakova, Development of a
bentonite clay/carbon nanotubes composite for liquid-phase
adsorption, Mater. Today Proc., 11 (2019) 398–403.
- F. Bergaya, B.K.G. Theng, G. Lagaly, Chapter 7 – Modified
Clays and Clay Minerals, F. Bergaya, B.K.G. Theng, G. Lagaly,
Eds., Handbook of Clay Science, Elsevier, Amsterdam, 2006,
pp. 393–422.
- R.B. Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas,
T.O. Varghese, Chapter 2 – An Overview of Polymer–Clay
Nanocomposites, K. Jlassi, M.M. Chehimi, S. Thomas, Eds.,
Clay-Polymer Nanocomposites, Elsevier, Amsterdam,
The Netherlands, 2017, pp. 29–81.
- L. Nikolic, I. Ristic, S. Stojiljkovic, Z. Vukovic, D. Stojiljkovic,
V. Nikolic, J. Budinski-Simendic, The influence of
montmorillonite modification on the properties of composite
material based on poly(methacrylic acid), J. Compos. Mater.,
46 (2011) 921–928.
- N. Ozturk, A. Tabak, S. Akgol, A. Denizli, Newly synthesized
montmorillonite–histidine (Bent–Hist) microcomposite affinity
sorbents for IgG adsorption, Colloids Surf., A, 301 (2007) 490.
- C.H. Zhou, D.S. Tong, W.H. Yu, Chapter 7 – Smectite
Nanomaterials: Preparation, Properties, and Functional
Applications, A.Q. Wang, W.B. Wang, Eds., Nanomaterials
from Clay Minerals A New Approach to Green Functional
Materials: A Volume in Micro and Nano Technologies, Elsevier,
Amsterdam, The Netherlands, 2019, pp. 335–364.
- M. Huskić, A. Anžlovar, M. Žigon, Montmorillonite–phenolic
resin nanocomposites prepared by one-step in-situ intercalative
polymerisation, Appl. Clay Sci., 101 (2014) 484–489.
- A. Berrazoum, R. Marouf, F. Ouadjenia, J. Schott, Bioadsorption
of a reactive dye from aqueous solution by municipal solid
waste, Biotechnol. Rep. (Amst), 7 (2015) 44–50.
- S. Lagergren, Zur theorie der sogenannten adsorption
gelosterstoffe (About the theory of so-called adsorption of
soluble substances), Kungliga Svenska Vetenskapsademiens
Handlingar (K. Sven. Vetenskapsakad. Handl.), 24 (1898) 1–39.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanitary Eng. Div., 89 (1963) 31–59.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- O. Hamdaoui, E. Naffrechoux, Modeling of adsorption
isotherms of phenol and chlorophenols onto granular activated
carbon: Part II. Models with more than two parameters,
J. Hazard. Mater., 147 (2007) 401–411.
- F. Zahaf, N. Dali, R. Marouf, F. Ouadjenia, J. Schott, Application
of hydroxy-aluminum- and cetyltrimethylammonium bromideintercalated
bentonite for removing acid and reactive dyes,
Desal. Water Treat., 57 (2015) 21045–21053.
- N. Boudouara, N. Dali, R. Marouf, F. Ouadjenia, J. Schott,
Removal of Chlorothalonil from water by a bentonite treated
chemically, J. Mater. Environ. Sci., 12 (2017) 4523–4531.
- A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima,
T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid,
J. Mater. Res., 8 (1993) 1179–1184.
- P.B. Messersmith, E.P. Giannelis, Synthesis and characterization
of layered silicate-epoxy nanocomposites, Chem. Mater.,
6 (1994) 1719–1725.
- R.L. Frost, J. Kristof, E. Horvath, J.T. Kloprogge, Rehydration
and phase changes of potassium acetate-intercalated halloysite
at 298 K, J. Colloid Interface Sci., 226 (2000) 318–327.
- R.L. Frost, J. Kristof, G.N. Paroz, J.T. Kloprogge, Role of water
in the intercalation of kaolinite with hydrazine, J. Colloid
Interface Sci., 208 (1998) 216–225.
- M.J. Wilson, Clay Mineralogy: Spectroscopic and Chemical
Determinative Methods, Chapman & Hall, London, 1995.
- I. Poljanšek, M. Krajnc, Characterization of phenol-formaldehyde
prepolymer resins by in line FT-IR Spectroscopy,
Acta Chim. Slov., 52 (2005) 238–244.
- I. Humelnicu, A. Băiceanu, M.-E. Ignat, V. Dulman, The
removal of Basic Blue 41 textile dye from aqueous solution
by adsorption onto natural zeolitic tuff: kinetics and
thermodynamics, Process Saf. Environ. Prot., 105 (2017) 274–287.
- C.G. Chen, T.B. Tolle, Fully exfoliated layered silicate epoxy
nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 42 (2004)
3981–3986.
- I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra,
Adsorptive removal of malachite green dye from aqueous
solution by bagasse fly ash and activated carbon-kinetic study
and equilibrium isotherm analyses. Colloids Surf., A, 264 (2005)
17–28.
- S. Kadi, S. Lellou, K. Marouf-Khelifa, J. Schott J, A. Khelifa,
Cadmium(II) and lead(II) removal from aqueous solutions
by heat-treated Algerian halloysite, Desal. Water Treat.,
113 (2018) 213–226.
- Z. Rawajfih, N. Nsour, Thermodynamic analysis of sorption
isotherms of chromium(VI) anionic species on reed biomass,
J. Chem. Thermodyn., 40 (2008) 846–851.
- F.A. Batzias, D.K. Sidiras, Simulation of methylene blue
adsorption by salts-treated beech sawdust in batch and fixedbed
systems, J. Hazard. Mater., 149 (2007) 8–17.
- K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe(III), Co(II)
and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces
in aqueous medium, Colloids Surf., A, 317 (2008) 71–79.
- A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes
using different types of clay: a review, Appl. Water Sci.,
7 (2017) 543–568.
- A. Kausar, K. Naeem, T. Hussain, Zill-i-Huma Nazli, H.N. Bhatti,
F. Jubeen, A. Nazir, M. Iqbal, Preparation and characterization
of chitosan/clay composite for direct Rose FRN dye removal
from aqueous media: comparison of linear and non-linear
regression methods, J. Mater. Res. Technol., 8 (2019) 1161–1174.
- S. Lellou, S. Kadi, L. Guemou, J. Schott, H. Benhebal, Study of
methylene blue adsorption by modified kaolinite by dimethyl
sulfoxide, Ecol. Chem. Eng. S, 27 (2020) 225–239.
- B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics
of brilliant green dye on kaolin, J. Hazard. Mater.,
161 (2009) 387–395.
- M. Yazdanshenas, K. Farizadeh, A. Fazilat, S. Ahmadi,
Adsorption of Basic Blue 41 from aqueous solution onto coconut
fiber particles, J. Appl. Chem. Res., 2 (2014) 15–28.
- M. Zarezadeh-Mehrizi, A. Badiei, Highly efficient removal of
Basic Blue 41 with nanoporous silica, Water Sci. Ind., 5 (2014)
49–57.
- C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies
in adsorption. Part XI. A system of classification of solution
adsorption isotherms, and its use in diagnosis of adsorption
mechanisms and in measurement of specific surface areas of
solids, J. Chem. Soc., 973 (1960) 3973–3993.
- M.A. Hossain, M. Mohibullah, Kinetics and thermodynamics
of adsorption of Basic Blue 41 on used black tea leaves, Int. J.
Sci. Eng. Res., 8 (2017) 995–1002.
- N.Sh. El-Gendy, R.A. El-Salamony, S.S. Abu Amr, H.N. Nassar,
Statistical optimization of Basic Blue 41 dye biosorption by
Saccharomyces cerevisiae spent waste biomass and photo-catalytic
regeneration using acid TiO2 hydrosol, J. Water Process Eng.,
6 (2015) 193–202.
- A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and
equilibrium study for the adsorption of textile dyes on coconut
shell activated carbon, Arabian J. Chem., 10 (2017) S3381–S3393.
- F. Kooli, Y. Liu, R. Al-Faze, A. Al Suhaimi, Effect of acid
activation of Saudi local clay mineral on removal properties of
Basic Blue 41 from an aqueous solution, Appl. Clay Sci., 116–117
(2015) 23–30.
- S. Afshin, S.A. Mokhtari, M. Vosoughi, H. Sadeghi, Y. Rashtbari,
Data of adsorption of Basic Blue 41 dye from aqueous solutions
by activated carbon prepared from filamentous algae, Data
Brief, 21 (2018) 1008–1013.
- Y.H. Jiang, Y.Y. Luo, F.M. Zhang, L.Q. Guo, L. Ni, Equilibrium
and kinetic studies of C.I. Basic Blue 41 adsorption onto N,
F-codoped flower-like TiO2 microspheres, Appl. Surf. Sci.,
273 (2013) 448–456.
- M.J. Jaycock, G.D. Parfitt, Chemistry of Interfaces, Ellis
Horwood Ltd., Onichester, 1981, p. 625.
- S.S. Gupta, K.G. Bhattacharyya, Immobilization of Pb(II), Cd(II)
and Ni(II) ions on kaolinite and montmorillonite surfaces
from aqueous medium, J. Environ. Manage., 87 (2008) 46–58.