References

  1. J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess Bioassay Eng., 32 (2009) 79–84.
  2. M.A. Hassaan, A. Pantaleo, L. Tedone, M.R. Elkatory, R.M. Ali, A. El Nemr, G.D. Mastro, Enhancement of biogas production via green ZnO nanoparticles: experimental results of selected herbaceous crops, Chem. Eng. Commun., 208 (2021) 1–14.
  3. S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Mater. Lett., 116 (2014) 275–277.
  4. N.A. Samat, R.M. Nor, Sol–gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts, Ceram. Int., 39 (2013) 545–548.
  5. P. Rajiv, S. Rajeshwari, R. Venckatesh, Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens, Spectrochim. Acta, Part A, 112 (2013) 384–387.
  6. S. Gunalan, R. Sivaraj, V. Rajendran, Green synthesized ZnO nanoparticles against bacterial and fungal pathogens, Progress Nat. Sci. Mater. Int., 22 (2012) 693–700.
  7. P. Nagajyothi, T.M. An, T. Sreekanth, J.I. Lee, D.J. Lee, K. Lee, Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles, Mater. Lett., 108 (2013) 160–163.
  8. Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity, Green Chem. Lett. Rev., 8 (2015) 59–63.
  9. H.A. Salam, R. Sivaraj, R. Venckatesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract, Mater. Lett., 131 (2014) 16–18.
  10. M. Darroudi, Z. Sabouri, R.K. Oskuee, A.K. Zak, H. Kargar, M.H. Hamid, Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth, Ceram. Int., 39 (2013) 9195–9199.
  11. J. Qu, C. Luo, J. Hou, Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants, IET Micro Nano Lett., 6 (2011) 174–176.
  12. J. Selvin, A.J. Huxley, A.P. Lipton, Immunomodulatory potential of marine secondary metabolites against bacterial diseases of shrimp, Aquaculture, 230 (2004) 241–248.
  13. S.V.P. Ramaswamy, S. Narendhran, R. Sivaraj, Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities, Bull. Mater. Sci., 39 (2016) 361–364.
  14. J. Selvin, A.P. Lipton, Development of a rapid ‘mollusc foot adherence bioassay’ for detecting potent antifouling bioactive compounds, Curr. Sci., 83 (2002) 735–737.
  15. M. Jahanshahi, Z. Babaei, Protein nanoparticle: a unique system as drug delivery vehicles, Afr. J. Biotechnol., 7 (2008) 4926–4934.
  16. K. Sobha, K. Surendranath, V. Meena, K.T. Jwala, N. Swetha, K.S.M. Latha, Emerging trends in nanobiotechnology, J. Biotechnol. Mol. Biol. Rev., 5 (2010) 001–012.
  17. M. Hassaan, M. El Katory, R.M. Ali, A. El Nemr, Photocatalytic degradation of reactive black 5 using photo-Fenton and ZnO nanoparticles under UV irradiation, Egypt. J. Chem., 63 (2020) 17–18.
  18. M. Ates, J. Daniels, Z. Arslan, I.O. Farah, H.F. Rivera, Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemiasalina) larvae: effects of particle size and solubility on toxicity, Environ. Sci. Processes Impacts, 15 (2013) 225–233.
  19. A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Synthesis and characterization of ZnO–polymer nanocomposites, Int. J. Mater. Form., 1 (2008) 767–770.
  20. G. Kalyani, V.G. Anil, C. Bo-Jung, L. Yong-Chien, Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study, J. Green Chem., 8 (2006) 1034–1041.
  21. R. Amirante, G. Demastro, E. Distaso, M.A. Hassaan, A. Mormando, A.M. Pantaleo, P. Tamburrano, L. Tedone, M.L. Clodoveo, Effects of ultrasound and green synthesis ZnO nanoparticles on biogas production from olive pomace, Energy Procedia, 148 (2018) 940–947.
  22. J. Sawai, J. Yoshikawa, Quantitative evaluation of antibacterial activities of metallic oxide powders ZnO, MgO andCaO by conductimetric assay, J. Microbiol. Methods, 54 (2003) 177–182.
  23. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer, Powder Technol., 212 (2011) 432–438.
  24. G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties, Mater. Res. Bull., 46 (2011) 2560–2566.
  25. C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, K.T. Santhosh, A. Bagavan, Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi, Spectrochim. Acta, Part A, 90 (2012) 78–84.
  26. M.A. Hassaan, A. El Nemr, F.F. Madkour, A.M. Idris, T.O. Said, T. Sahlabji, M.M. Alghamdi, A.A. El-Zahhar, Advanced oxidation of acid yellow 11 dye; detoxification and degradation mechanism, Toxin Rev., 39 (2020) 1–9.
  27. M.A. Hassaan, A. Pantaleo, F. Santoro, M.R. Elkatory, G.D. Mastro, A. El Sikaily, S. Ragab, A. El Nemr, Technoeconomic analysis of ZnO nanoparticles pretreatments for biogas production from barley straw, Energies, 13 (2020) 5001, doi: 10.3390/en13195001.
  28. M.A. Hassaan, A. El Nemr, A.A. El-Zahhar, A.M. Idris, M.M. Alghamdi, T. Sahlabji, T.O. Said, Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study, Toxin Rev., (2020) 1–10 (in Press).
  29. M. Kausalya, R.G.M. Narasimha, Antimicrobial activity of marine algae, J. Algal Biomass Utln, 6 (2015) 78–87.
  30. L.E. Hancock, M.S. Gilmore, The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 1574–1579.
  31. J. Feldmann, Recherches sur la Vegetation Marine de la Méditerranée: la Côte des Albères, Première Thèse, Wolf, 1937.
  32. C. Valgas, S.M. de Souza, E.F.A. Smânia, J.R.A. Smânia, Screening methods to determine antibacterial activity of natural products, Braz. J. Microbiol., 38 (2007) 369–380.
  33. R.D.C. Soltani, M. Safari, Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization, Ultrason. Sonochem., 32 (2016) 181–190.
  34. D.C.R. Soltani, A.R. Khataee, M. Mashayekhi, Photocatalytic degradation of a textile dye in aqueous phase over ZnO nanoparticles embedded in biosilica nanobiostructure, Desal. Water Treat., 57 (2016) 13494–13504.
  35. G. Nagaraju, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial, Mater. Res. Bull., 94 (2017) 54–63.
  36. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles, Spectrochim. Acta, Part A, 182 (2017) 42–49.
  37. K.D. Saravanak, S. Sivaranjani, S. Karthi, S. Pandiarajan, Synthesis and antibacterial investigation of ZnO/CNPs nanocomposite powder by hot nickel plate assisted cost effective spray pyrolysis method and its characterizations, IOSR J. Appl. Phys., 8 (2016) 16–22.
  38. D. Geetha, T. Thilagavathi, Hydrothermal synthesis of nano ZnO structures from CTAB, Dig. J. Nanomater. Biostruct., 5 (2010) 297–301.
  39. S. Suwanboon, Structural and optical properties of nanocrystalline ZnO powder from sol–gel method, Sci. Asia, 34 (2008) 31–34.
  40. S. Udayakumar, V. Renuka, K. Kavitha, Structural, optical and thermal studies of cobalt doped hexagonal ZnO by simple chemical precipitation method, J. Chem. Pharm. Res., 4 (2012) 1271–1280.
  41. R.M. Ali, M.R. Elkatory, H.A. Hamad, Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel, Fuel, 268 (2020) 117297, doi: 10.1016/j.fuel.2020.117297.
  42. E.A. Soliman, M.R. Elkatory, A.I. Hashem, H.S. Ibrahim, Synthesis and performance of maleic anhydride copolymers with alkyl linoleate or tetra-esters as pour point depressants for waxy crude oil, Fuel, 211 (2018) 535–547.
  43. S. Senapati, A. Syed, S. Moeez, A. Kumar, A. Ahmad, Intracellular synthesis of gold nanoparticles using alga tetraselmiskochinensis, Mater. Lett., 79 (2012) 116–118.
  44. R. Sivakami, S. Dhanuskodi, R. Karvembu, Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods, Spectrochim. Acta, Part A, 152 (2016) 43–50.
  45. M.A. Ismail, K.K. Taha, A. Modwi, L. Khezami, ZnO nanoparticles: surface and X-ray profile analysis, J. Ovonic Res., 14 (2018) 381–393.
  46. H. Zhongbing, Z.H. Xu, Y. Danhong, Y. Guangfu, L. Xiaoming, K. Yunqing, Y. Yadong, D. Huang, H. Baoqing, Toxicological effect of ZnO nanoparticles based on bacteria, Langmuir, 24 (2008) 4140–4144.
  47. Y. Liu, L. He, A. Mustapha, H. Li, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol., 107 (2009) 1193–1201.
  48. R. Brayner, R. Ferarri-Iliou, N. Brivois, S. Djediat, Toxicological impact studies based on E. coli bacteria in ultra fine ZnO nanoparticles colloidal medium, Nano Lett., 6 (2006) 866–870.
  49. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317–332.
  50. R. Sujitha, R. Kunta, Novel adsorbents possessing cumulative sorption nature evoked from Al2O3 nanoflakes, C. urens seeds active carbon and calcium alginate beads for defluoridation studies, J. Taiwan Inst. Chem. Eng., 101 (2019) 50–63.
  51. J.N. Edokpayi, J.O. Odiyo, T.A.M. Msagati, E.O. Popoola, A novel approach for the removal of lead II; ion from wastewater using mucilaginous leaves of Dicerocaryum eriocarpum plant, Sustainability, 7 (2015) 14026–14041.
  52. M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater, Egypt. J. Aquat. Res., 43 (2017) 11–19.
  53. A. El Nemr, M.A. Hassaan, F.F. Madkour, Advanced oxidation process (AOP) for detoxification of acid red 17 dye solution and degradation mechanism, Environ. Process., 5 (2018) 95–113.
  54. M.A.O. Badmus, T.O.K. Audu, B.U. Anyata, Removal of lead ion from industrial wastewater by activated carbon prepared from periwinkle shells typanotonus fuscatus, Turk. J. Eng. Environ. Sci., 31 (2007) 251–263.