References
- A. Kistan, V. Kanchana, A.T. Ansari, Analysis of Ambattur
lake water quality with reference to physico-chemical aspects
at Chennai, Tamil Nadu, Int. J. Sci. Res., 4 (2013) 944–947.
- National Water Quality Monitoring Programme, Fifth
Monitoring Report (2005–2006), Pakistan Council of Research
in Water Resources (PCRWR) Islamabad, Islamabad, Pakistan,
2007.
- S. Mehmood, A. Ahmad, A. Ahmed, N. Khalid, T. Javed,
Drinking water quality in the capital city of Pakistan, Sci. Rep.,
2 (2013) 1–6.
- A. Azizullah, M.N.K. Khattak, P. Richter, D.-P. Häder, Water
pollution in Pakistan and its impact on public health—a review,
Environ. Int., 37 (2011) 479–497.
- N.M. Gazzaz, M.K. Yusoff, A.Z. Aris, H. Juahir, M.F. Ramli,
Artificial neural network modeling of the water quality index
for Kinta River (Malaysia) using water quality variables as
predictors, Mar. Pollut. Bull., 64 (2012) 2409–2420.
- Available at: https://timesofindia.indiatimes.com/city/chennai/tamil-nadu-ravaged-by-raw-sewage-korattur-lake-now-liesencroached/articleshow/74328391.cms (last accessed May 11,
2020).
- Available at: https://timesofindia.indiatimes.com/city/chennai/
tamil-nadu-deadline-over-government-seeks-1-month-to-plankorattur-
lake-clean-up/articleshow/74372292.cms (last accessed
May 12, 2020).
- S. Dzeroski, D. Demsar, J. Grbovic, Predicting chemical
parameters of river water quality from bioindicator data, Appl.
Intell., 13 (2000) 7–17.
- F. Muharemi, D. Logofătu, F. Leon, Machine learning
approaches for anomaly detection of water quality on a realworld
data set, J. Inf. Telecommun., 3 (2019) 294–307.
- Y. Xiang, L. Jiang, Water Quality Prediction Using LS-SVM and
Particle Swarm Optimization, Second International Workshop
on Knowledge Discovery and Data Mining, IEEE, Moscow,
2009, pp. 900–904.
- P. Varalakshmi, S. Vandhana, S. Vishali, Prediction of Water
Quality Using Naive Bayesian Algorithm, Eighth International
Conference on Advanced Computing, IEEE, Chennai, 2017,
pp. 224–229.
- H. Haghiabi, A.H. Nasrolahi, A. Parsaie, Water quality
prediction using machine learning methods, Water Qual. Res.
J., 53 (2018) 3–13.
- U. Ahmed, R. Mumtaz, H. Anwar, A.A. Shah, R. Irfan, J. García-
Nieto, Efficient water quality prediction using supervised
machine learning, Water, 11 (2019) 2210, doi: 10.3390/w11112210.
- P. Deepa, R. Raveen, P. Venkatesan, S. Arivoli, T. Samuel,
Seasonal variations of physicochemical parameters of Korattur
lake, Chennai, Tamil Nadu, India, Int. J. Chem. Stud., 4 (2016)
116–123.
- I.N. Balan, M. Shivakumar, P.D.M. Kumar, An assessment of
groundwater quality using water quality index in Chennai,
Tamil Nadu, India, Chron. Young Sci., 3 (2012) 146–150.
- World Health Organization, Guidelines for Drinking-Water
Quality, Vol. 1, World Health Organization, Geneva, 1993.
- World Health Organization, Water Quality and Health-Review
of Turbidity: Information for Regulators and Water Suppliers
(No. WHO/FWC/WSH/17.01), World Health Organization,
2017.
- A. Colter, R.L. Mahler, Iron in Drinking Water, Pacific Northwest
Cooperative Extension, Moscow, Idaho, 2006.
- O. Fadiran, S.C. Dlamini, A. Mavuso, A comparative study
of the phosphate levels in some surface and groundwater
bodies of Swaziland, Bull. Chem. Soc. Ethiop., 22 (2008) 197–206.
- Available at: https://water-research.net/index.php/chloridesand-
salts-in-water-future-problem-for-groundwater-users (last
accessed May 12, 2020).
- D.W. Advisory, Consumer Acceptability Advice and Health
Effects Analysis on Sodium, US Environmental Protection
Agency Office of Water (4304T), Health and Ecological
Criteria Division, Washington, DC, 2003.
- S. Tong, D. Koller, Support vector machine active learning
with applications to text classification, J. Mach. Learn. Res.,
2 (2001) 45–66.
- J.R. Quinlan, Decision trees and decision-making, IEEE Trans.
Syst. Man Cybern., 20 (1990) 339–346.
- A. Liaw, M. Wiener, Classification and Regression by Random
Forest, R news, 2/3 (2002) 18–22.
- D.W. Hosmer Jr., S. Lemeshow, R.X. Sturdivant, Applied
Logistic Regression, John Wiley & Sons, New York, NY, 2013.
- H. Zhang, The Optimality of Naive Bayes, American Association
for Artificial Intelligence, 2004.
- M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond Accuracy,
F-Score and ROC: A Family of Discriminant Measures for
Performance Evaluation, A. Sattar, B. Kang, Eds., Australasian
Joint Conference on Artificial Intelligence, Springer, Berlin,
Heidelberg, 2006, pp. 1015–1021.
- E. Goutte, A. Gaussier, Probabilistic Interpretation of
Precision, Recall and F-Score, with Implication for Evaluation,
D.E. Losada, J.M. Fernández-Luna, Eds., European Conference
on Information Retrieval, Springer, Berlin, Heidelberg, 2005,
pp. 345–359.
- A.K. Chaurasia, H.K. Pandey, S.K. Tiwari, R. Prakash, P. Pandey,
A. Ram, Groundwater Quality assessment using water quality
index (WQI) in parts of Varanasi District, Uttar Pradesh, India,
J. Geol. Soc. India, 92 (2018) 76–82.