References

  1. A. Kistan, V. Kanchana, A.T. Ansari, Analysis of Ambattur lake water quality with reference to physico-chemical aspects at Chennai, Tamil Nadu, Int. J. Sci. Res., 4 (2013) 944–947.
  2. National Water Quality Monitoring Programme, Fifth Monitoring Report (2005–2006), Pakistan Council of Research in Water Resources (PCRWR) Islamabad, Islamabad, Pakistan, 2007.
  3. S. Mehmood, A. Ahmad, A. Ahmed, N. Khalid, T. Javed, Drinking water quality in the capital city of Pakistan, Sci. Rep., 2 (2013) 1–6.
  4. A. Azizullah, M.N.K. Khattak, P. Richter, D.-P. Häder, Water pollution in Pakistan and its impact on public health—a review, Environ. Int., 37 (2011) 479–497.
  5. N.M. Gazzaz, M.K. Yusoff, A.Z. Aris, H. Juahir, M.F. Ramli, Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors, Mar. Pollut. Bull., 64 (2012) 2409–2420.
  6. Available at: https://timesofindia.indiatimes.com/city/chennai/tamil-nadu-ravaged-by-raw-sewage-korattur-lake-now-liesencroached/articleshow/74328391.cms (last accessed May 11, 2020).
  7. Available at: https://timesofindia.indiatimes.com/city/chennai/ tamil-nadu-deadline-over-government-seeks-1-month-to-plankorattur- lake-clean-up/articleshow/74372292.cms (last accessed May 12, 2020).
  8. S. Dzeroski, D. Demsar, J. Grbovic, Predicting chemical parameters of river water quality from bioindicator data, Appl. Intell., 13 (2000) 7–17.
  9. F. Muharemi, D. Logofătu, F. Leon, Machine learning approaches for anomaly detection of water quality on a realworld data set, J. Inf. Telecommun., 3 (2019) 294–307.
  10. Y. Xiang, L. Jiang, Water Quality Prediction Using LS-SVM and Particle Swarm Optimization, Second International Workshop on Knowledge Discovery and Data Mining, IEEE, Moscow, 2009, pp. 900–904.
  11. P. Varalakshmi, S. Vandhana, S. Vishali, Prediction of Water Quality Using Naive Bayesian Algorithm, Eighth International Conference on Advanced Computing, IEEE, Chennai, 2017, pp. 224–229.
  12. H. Haghiabi, A.H. Nasrolahi, A. Parsaie, Water quality prediction using machine learning methods, Water Qual. Res. J., 53 (2018) 3–13.
  13. U. Ahmed, R. Mumtaz, H. Anwar, A.A. Shah, R. Irfan, J. García- Nieto, Efficient water quality prediction using supervised machine learning, Water, 11 (2019) 2210, doi: 10.3390/w11112210.
  14. P. Deepa, R. Raveen, P. Venkatesan, S. Arivoli, T. Samuel, Seasonal variations of physicochemical parameters of Korattur lake, Chennai, Tamil Nadu, India, Int. J. Chem. Stud., 4 (2016) 116–123.
  15. I.N. Balan, M. Shivakumar, P.D.M. Kumar, An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India, Chron. Young Sci., 3 (2012) 146–150.
  16. World Health Organization, Guidelines for Drinking-Water Quality, Vol. 1, World Health Organization, Geneva, 1993.
  17. World Health Organization, Water Quality and Health-Review of Turbidity: Information for Regulators and Water Suppliers (No. WHO/FWC/WSH/17.01), World Health Organization, 2017.
  18. A. Colter, R.L. Mahler, Iron in Drinking Water, Pacific Northwest Cooperative Extension, Moscow, Idaho, 2006.
  19. O. Fadiran, S.C. Dlamini, A. Mavuso, A comparative study of the phosphate levels in some surface and groundwater bodies of Swaziland, Bull. Chem. Soc. Ethiop., 22 (2008) 197–206.
  20. Available at: https://water-research.net/index.php/chloridesand- salts-in-water-future-problem-for-groundwater-users (last accessed May 12, 2020).
  21. D.W. Advisory, Consumer Acceptability Advice and Health Effects Analysis on Sodium, US Environmental Protection Agency Office of Water (4304T), Health and Ecological Criteria Division, Washington, DC, 2003.
  22. S. Tong, D. Koller, Support vector machine active learning with applications to text classification, J. Mach. Learn. Res., 2 (2001) 45–66.
  23. J.R. Quinlan, Decision trees and decision-making, IEEE Trans. Syst. Man Cybern., 20 (1990) 339–346.
  24. A. Liaw, M. Wiener, Classification and Regression by Random Forest, R news, 2/3 (2002) 18–22.
  25. D.W. Hosmer Jr., S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression, John Wiley & Sons, New York, NY, 2013.
  26. H. Zhang, The Optimality of Naive Bayes, American Association for Artificial Intelligence, 2004.
  27. M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation, A. Sattar, B. Kang, Eds., Australasian Joint Conference on Artificial Intelligence, Springer, Berlin, Heidelberg, 2006, pp. 1015–1021.
  28. E. Goutte, A. Gaussier, Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation, D.E. Losada, J.M. Fernández-Luna, Eds., European Conference on Information Retrieval, Springer, Berlin, Heidelberg, 2005, pp. 345–359.
  29. A.K. Chaurasia, H.K. Pandey, S.K. Tiwari, R. Prakash, P. Pandey, A. Ram, Groundwater Quality assessment using water quality index (WQI) in parts of Varanasi District, Uttar Pradesh, India, J. Geol. Soc. India, 92 (2018) 76–82.