References

  1. D. Balarak, F.K. Mostafapour, Photocatalytic degradation of amoxicillin using UV/Synthesized NiO from pharmaceutical wastewater, Indonesian J. Chem., 19 (2019) 211–218.
  2. N. Sharma, N. Dehiman, Kinetic and thermodynamic studies for ciprofloxacin hydrochloride adsorption from aqueous solution on CuO nanoparticles, Int. J. ChemTech Res., 10 (2017) 98–106.
  3. S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin, Catal. Today, 186 (2012) 29–34.
  4. S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surfacemodified carbon materials, Water Res., 45 (2011) 4583–4591.
  5. D. Balarak, H. Azarpira, F.K. Mostafapour, Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using Corylus avellana (Hazelnut) activated carbon, Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  6. D. Avisar, O. Primor, I. Gozlan, H. Mamane, Sorption of sulfonamides and tetracyclines to montmorillonite clay, Water Air Soil Pollut., 209 (2010) 439–450.
  7. X. Zhu, D.C.W. Tsang, F. Chen, S. Li, X. Yang, Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry, Environ. Technol., 36 (2015) 3094–3102.
  8. D. Yin, Z. Xu, J. Shi, L. Shen, Z. He, Adsorption characteristics of ciprofloxacin on the schorl: kinetics, thermodynamics, effect of metal ion and mechanisms, J. Water Reuse Desal., 8 (2017) 350–359.
  9. A. Fakhri, S. Adami, Adsorption and thermodynamic study of cephalosporins antibiotics from aqueous solution onto MgO nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  10. D. Balarak, A.H. Mahvi, M.J. Shim, S.-M. Lee, Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies, Desal. Water Treat., 203 (2020) 1–11.
  11. H. Azarpira, Y. Mahdavi, O. Khaleghi, D. Balarak, Thermodynamic studies on the removal of metronidazole antibiotic by multi-walled carbon nanotubes, Pharm. Lett., 8 (2016) 107–113.
  12. J.M. Cha, S. Yang, K.H. Carlson, Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry, J. Chromatogr., A, 1115 (2006) 46–57.
  13. A.J. Watkinson, E.J. Murby, D.W. Kolpin, S.D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407 (2009) 2711–2723.
  14. T.B. Minh, H.W. Leung, I.H. Loi, W.H. Chan, M.K. So, J.Q. Mao, D. Choi, J.C.W. Lam, G. Zheng, M. Martin, J.H.W. Lee, P.K.S. Lam, B.J. Richardson, Antibiotics in the Hong Kong metropolitan area: ubiquitous distribution and fate in Victoria Harbour, Mar. Pollut. Bull., 58 (2009) 1052–1062.
  15. X.L. Pan, C.N. Deng, D.Y. Zhang, J.L. Wang, G.J. Mu, Y. Chen, Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests, Aquat. Toxicol., 89 (2008) 207–213.
  16. H. Tekin, O. Bilkay, S.S. Ataberk, T.H. Balta, I.H. Ceribasi, F.D. Sanin, U. Yetis, Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater, J. Hazard. Mater., 136 (2006) 258–265.
  17. D. Balarak, H. Azarpira. Photocatalytic degradation of sulfamethoxazole in water: investigation of the effect of operational parameters, Int. J. ChemTech Res., 9 (2016) 566–573.
  18. X.S. Wang, Y. Zhou, Y. Jiang, C. Sun, The removal of basic dyes from aqueous solutions using agricultural by-products, J. Hazard. Mater., 157 (2008) 374–385.
  19. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J., 248 (2014) 191–199.
  20. W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y.L. Tsai, J.-S. Jean, Z.H. Li, K. Krukowski, Removal of ciprofloxacin from water by birnessite, J. Hazard. Mater., 250 (2013) 362–369.
  21. K. Shalini, S.Z. Anwer, P.K. Sharma, V.K. Garg, N. Kumar, A review on pharmaceutical pollution, Int. J. PharmTech. Res., 2 (2010) 2265.
  22. J.L. Santos, I. Aparicio, E. Alonso, Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville City (Spain), Environ. Int., 33 (2007) 596–601.
  23. K. Oberle, M.J. Capdeville, T. Berthe, H. Budzinski, F. Petit, Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment, Environ. Sci. Technol., 46 (2012) 1859–1868.
  24. R. Noroozi, T.J. Al-Musawi, H. Kazemian, E.M. Kalhori, M. Zarrabi, Removal of cyanide using surface-modified Linde Type-A zeolite nanoparticles as an efficient and eco-friendly material, J. Water Process Eng., 21 (2018) 44–51.
  25. J. Deng, Y. Shao, N. Gao, C. Tan, S. Zhou, X. Hu, CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water, J. Hazard. Mater., 262 (2013) 836–844.
  26. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  27. S.T. Danalıoğlu, S.S. Bayazit, O.K. Kuyumcu, M.A. Salam, Efficient removal of antibiotics by a novel magnetic adsorbent: magnetic activated carbon/chitosan (MACC) nanocomposite, J. Mol. Liq., 240 (2017) 589–596.
  28. R.A. Diyanati, Z. Yousefi, J.Y. Cherati, The ability of Azolla and Lemna minor biomass for adsorption of phenol from aqueous solutions, J. Mazand Univ. Med. Sci., 23 (2013) 17–23.
  29. M.A. Zazouli, A.H. Mahvi, S. Dobaradaran, M. Barafrashtehpour, Y. Mahdavi, Adsorption of fluoride from aqueous solution by modified Azolla filiculoides, Fluoride, 47 (2014) 349–358.
  30. R.A. Diyanati, Z. Yousefi, J.Y. Cherati, Investigating phenol adsorption from aqueous solution by dried Azolla, J. Mazand Univ. Med. Sci., 22 (2013) 13–21.
  31. C.L. Zhang, G.L. Qiao, F. Zhao, Y. Wang, Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution, J. Mol. Liq. 163 (2011) 53–56.
  32. S. Rakshit, D. Sarkar, E.J. Elzinga, P. Punamiya, R. Datta, Mechanisms of ciprofloxacin removal by nano-sized magnetite, J. Hazard. Mater., 246 (2013) 221–226.
  33. D. Balarak, E. Bazrafshan, Y. Mahdavi, S.M. Lee, Kinetic, isotherms and thermodynamic studies in the removal of 2-chlorophenol from aqueous solution using modified rice straw, Desal. Water Treat., 63 (2017) 203–211.
  34. D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol., 75 (2017) 1599–1606.
  35. A.A. Mohammadi, A. Zarei, H. Alidadi, M. Afsharnia, M. Shams, Two dimensional zeolitic imidazolate framework-8 for efficient removal of phosphate from water, process modeling, optimization, kinetic, and isotherm studies, Desal. Water Treat., 129 (2018) 244
  36. W.R.D.N. Sousa, A.R. Oliveira, J.F.C. Filho, T.C.M. Dantas, A.G.D. Santos, V.P.S. Caldeira, E.L. Geraldo, Ciprofloxacin adsorption on ZnO supported on SBA-15, Water Air Soil Pollut., 229 (2018) 1–12.
  37. Y.J. Tu, C.F. You, M.H. Chen, Y.P. Duan, Efficient removal/recovery of Pb onto environmentally friendly fabricated copper ferrite nanoparticles, J. Taiwan Inst. Chem. Eng., 71 (2017) 197–205.
  38. Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloids Surf., A, 424 (2013) 74–80.
  39. H. Chen, Z. Zhang, M. Feng, W. Liu, W. Wang, Q. Yang, Y. Hu, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (Mackinawite), Chem. Eng. J., 313 (2017) 498–507.
  40. B.N. Estevinho, I. Martins, N. Ratola, A. Alves, L. Santos, Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant, J. Hazard. Mater., 143 (2007) 535–540.
  41. A.H. Mahvi, F.K. Mostafapour, Biosorption of tetracycline from aqueous solution by Azolla filiculoides: equlibrium kinetic and thermodynamic studies, Fresenius Environ. Bull., 27 (2018) 5759–5767.
  42. D. Balarak, H. Azarpira, F.K. Mostafapour, Adsorption isotherm studies of tetracycline antibiotics from aqueous solutions by maize stalks as a cheap biosorbent, Int. J. Pharm. Technol., 8 (2016) 16664–16675.
  43. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  44. M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci., 40 (2008) 179–186.
  45. S. Ahmadi, A. Banach, F.K. Mostafapour, Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: adsorption isotherm study, Desal. Water Treat., 89 (2017) 297–303.
  46. D. Balarak, H. Azarpira, Rice husk as a biosorbent for antibiotic metronidazole removal: isotherm studies and model validation, Int. J. ChemTech Res., 9 (2016) 566–573.
  47. L.T. Popoola, Tetracycline and sulfamethoxazole adsorption onto nanomagnetic walnut shell-rice husk: isotherm, kinetic, mechanistic and thermodynamic studies, Int. J. Environ. Anal. Chem., 100 (2019) 1–23.
  48. D. Balarak, H. Azarpira, F.K. Mostafapour, Study of the adsorption mechanisms of cephalexin on to Azolla filiculoides, Pharm. Chem., 8 (2016) 114–121.
  49. F.A. Adekola, H.I. Adegoke, G.B. Adebayo, I.O. Abdulsalam, Batch sorption of ciprofloxacin on kaolinitic clay and nhematite composite: equilibrium and thermodynamics studies, Mor. J. Chem., 4 (2016) 384–424.
  50. L. Wang, G. Chen, C. Ling, J. Zhang, K. Szerlag, Adsorption of ciprofloxacin on to bamboo charcoal: effects of pH, salinity, cations, and phosphate, Environ. Prog. Sustainable Energy, 36 (2017) 1108–1115.