References
- G. Elkiran, A. Turkman, Water scarcity impacts on Northern
Cyprus and alternative mitigation strategies, Provided for noncommercial
research and education use. Not for reproduction,
distribution or commercial use, January 2016, (2008),
doi: 10.1007/978-1-4020-8960-2.
- M.S. Gaya, N. Abdul Wahab, S.I. Samsudin, ANFIS modelling
of carbon and nitrogen removal in domestic wastewater
treatment plant, J. Technol., 67 (2014) 29–34.
- Q.B. Pham, M.S. Gaya, S.I. Abba, R.A. Abdulkadir, P. Esmaili,
N.T.H. Linh, C. Sharma, A. Malik, D.N. Khoi, D.D. Tran,
L. Do, Modeling of Bunus regional sewage treatment plant
using machine learning approaches, Desal. Water Treat.,
203 (2020) 80–90.
- N.A. Memon, M.A. Unar, A.K. Ansari, pH prediction by artificial
neural networks for the drinking water of the distribution
system of Hyderabad City, Neural Evol. Comput., 31 (2012)
137–146.
- S.I. Abba, Q.B. Pham, G. Saini, N.T.T. Linh, A.N. Ahmed,
M. Mohajane, M. Khaledian, R.A. Abdulkadir, Q.-V. Bach,
Implementation of data intelligence models coupled with
ensemble machine learning for prediction of water quality
index, Environ. Sci. Pollut. Res., 27 (2020) 41524–41539.
- S.J. Hadi, M. Tombul, Forecasting daily streamflow for basins
with different physical characteristics through data-driven
methods, Water Resour. Manage., 32 (2018) 3405–3422.
- S.I. Abba, G. Elkiran, V. Nourani, Nonlinear Ensemble
Modeling for Multi-step Ahead Prediction of Treated COD in
Wastewater Treatment Plant, R. Aliev, J. Kacprzyk, W. Pedrycz,
M. Jamshidi, M. Babanli, F. Sadikoglu, Eds., 10th International
Conference on Theory and Application of Soft Computing,
Computing with Words and Perceptions – ICSCCW-2019,
Advances in Intelligent Systems and Computing, Vol. 1095,
Springer, Cham, 2019, pp. 683–689. Available at: https://doi.
org/10.1007/978-3-030-35249-3_88.
- A.Š. Tomić, D. Antanasijević, M. Ristić, P.-G. Aleksandra,
V. Pocajt, A linear and nonlinear polynomial neural network
modeling of dissolved oxygen content in surface water: interand
extrapolation performance with inputs’ significance
analysis, Sci. Total Environ., 610–611 (2018) 1038–1046.
- E. Sharghi, V. Nourani, A. Molajou, H. Najafi, Conjunction of
emotional ANN (EANN) and wavelet transform for rainfallrunoff
modeling, J. Hydroinf., 21 (2019) 136–152.
- V. Nourani, A.H. Baghanam, J. Adamowski, O. Kisi,
Applications of hybrid wavelet-artificial intelligence models
in hydrology: a review, J. Hydrol., 514 (2014) 358–377.
- T. Dede, M. Kankal, A.R. Vosoughi, M. Grzywiński, M. Kripka,
Artificial intelligence applications in civil engineering, Adv.
Civ. Eng., 2019 (2019) 8384523 (1–4), doi: 10.1155/2019/8384523.
- G. Elkiran, V. Nourani, S.I. Abba, J. Abdullahi, Artificial
intelligence-based approaches for multi-station modelling
of dissolve oxygen in river, Global J. Environ. Sci. Manage.,
4 (2018) 439–450.
- V. Nourani, N. Farboudfam, Rainfall time series disaggregation
in mountainous regions using hybrid wavelet-artificial
intelligence methods, Environ. Res., 168 (2019) 306–318.
- R.C. Deo, O. Kisi, V.P. Singh, Drought forecasting in Eastern
Australia using multivariate adaptive regression spline, least
square support vector machine and M5Tree model, Atmos.
Res., 184 (2017) 149–175.
- M. Alizamir, O. Kisi, Z.-K. Mohammad, Modelling long-term
groundwater fluctuations by extreme learning machine using
hydro-climatic data, Hydrol. Sci. J., 63 (2018) 63–73.
- S.I. Abba, A.G. Usman, Y.A. Danmaraya, A.G. Usman,
H.U. Abdullahi, Modeling of water treatment plant performance
using artificial neural network: case study Tamburawa
Kano-Nigeria, DUJOPAS, 6 (2020) 135–144.
- B. Maryam, H. Büyükgüngör, Wastewater reclamation
and reuse trends in Turkey: opportunities and challenges,
J. Water Process Eng., 30 (2019) 100501, doi: 10.1016/j.jwpe.
2017.10.001.
- V. Nourani, G. Elkiran, S.I. Abba, Wastewater treatment plant
performance analysis using artificial intelligence – an ensemble
approach, Water Sci. Technol., 78 (2018) 477 (1–14), doi: 10.2166/
wst.2018.477.
- K.B. Newhart, R.W. Holloway, A.S. Hering, T.Y. Cath, Datadriven
performance analyses of wastewater treatment plants:
a review, Water Res., 157 (2019) 498–513.
- S.I. Abba, Q.B. Pham, A.G. Usman, N.T.T. Linh, D.S. Aliyu,
Q. Nguyen, Q.-V. Bach, Emerging evolutionary algorithm
integrated with kernel principal component analysis for
modeling the performance of a water treatment plant, J. Water
Process Eng., 33 (2020) 101081, doi: 10.1016/j.jwpe.2019.101081.
- S.I. Abba, S.J. Hadi, J. Abdullahi, River water modelling
prediction using multi-linear regression, artificial neural
network, and adaptive neuro-fuzzy inference system techniques,
Procedia Comput. Sci., 120 (2017) 75–82.
- R. Costache, Q.B. Pham, E. Sharifi, N.T.T. Linh, S.I. Abba,
M. Vojtek, J. Vojteková, P.T.T. Nhi, D.N. Khoi, Flash-flood
susceptibility assessment using multi-criteria decision making
and machine learning supported by remote sensing and
GIS techniques, Remote Sens., 12 (2020) 106, doi: 10.3390/
RS12010106.
- S.J. Hadi, S.I. Abba, S.S. Sammen, S.Q. Salih, A.-A. Nadhir,
Z.M. Yaseen, Nonlinear input variable selection approach
integrated with non-tuned data intelligence model for
streamflow pattern simulation, IEEE Access, 7 (2019) 141533–
141548.
- A.K. Verma, T.N. Singh, Prediction of water quality from
simple field parameters, Environ. Earth Sci., 69 (2013) 821–829.
- F. Granata, S. Papirio, G. Esposito, R. Gargano, G. de Marinis,
Machine learning algorithms for the forecasting of wastewater
quality indicators, Water, 9 (2017) 1–12.
- M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha, B. Muhammad,
A. Sani, A. Tijjani, N.A. Wahab, M.T.M. Khairi, Estimation of
turbidity in water treatment plant using Hammerstein-Wiener
and neural network technique, Indonesian J. Electr. Eng.
Comput. Sci., 5 (2017) 666–672.
- UNDP, New Nicosia Waste Water Treatment Plant, United
Nations Development Programme, Nicosia, Northern Part of
Cyprus, 2014.
- S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen
demand from the astewater treatment plant using artificial
neural network application, Procedia Comput. Sci., 120 (2017)
156–163.
- Z.-Y. Chen, T.-H. Zhang, R. Zhang, Z.-M. Zhu, J. Yung,
P.-Y. Chen, C.-Q. Ou, Y. Guo, Extreme gradient boosting model
to estimate PM2.5 concentrations with missing-filled satellite
data in China, Atmos. Environ., 202 (2019) 180–189.
- K. Zarei, M. Atabati, M. Ahmadi, Shuffling cross–validation–
bee algorithm as a new descriptor selection method for
retention studies of pesticides in biopartitioning micellar
chromatography, J. Environ. Sci. Health., Part B, 52 (2017)
346–352.
- R.G. Sargent, Verification and Validation of Simulation Models,
Proceedings of the 2010 Winter Simulation Conference, IEEE,
Baltimore, MD, USA, 2010, pp. 278–289.
- M. Valipour, M.E. Banihabib, S.M.R. Behbahani, Comparison
of the ARMA, ARIMA, and the autoregressive artificial
neural network models in forecasting the monthly inflow of
Dez Dam Reservoir, J. Hydrol., 476 (2013) 433–441.
- S.I. Abba, M.S. Gaya, M.L. Yakubu, M.U. Zango, R.A. Abdulkadir,
M.A. Saleh, A.N. Hamza, U. Abubakar, A.I. Tukur,
N.A. Wahab, Modelling of Uncertain System: A Comparison
Study of Linear and Nonlinear Approaches, 2019 IEEE
International Conference on Automatic Control and Intelligent
Systems (I2CACIS), IEEE, Selangor, Malaysia, Malaysia, 2019.
- S.I. Abba, N.T.T. Linh, J. Abdullahi, S.I.A. Ali, Q.B. Pham,
R.A. Abdulkadir, R. Costache, V.T. Nam, D.T. Anh, Hybrid
machine learning ensemble techniques for modeling dissolved
oxygen concentration, IEEE Access, 8 (2020) 157218–157237,
doi: 10.1109/ACCESS.2020.3017743.
- A.G. Usman, S. Işik, S.I. Abba, A novel multi-model data-driven
ensemble technique for the prediction of retention factor in
HPLC method development, Chromatographia, 83 (2020)
933–945.
- Q.B. Pham, S.I. Abba, A.G. Usman, N.T.T. Linh, V. Gupta,
A. Malik, R. Costache, N.D. Vo, D.Q. Tri, Potential of hybrid
data-intelligence algorithms for multi-station modelling of
rainfall, Water Resour. Manage., 33 (2019) 5067–5087.
- V. Nourani, G. Elkiran, S.I. Abba, Multi-parametric modeling
of water treatment plant using AI-based nonlinear ensemble,
J. Water Supply Res. Technol. AQUA, 2 (2019) 1–15.
- A.A. Godarzi, R.M. Amiri, A. Talaei, T. Jamasb, Predicting
oil price movements: a dynamic artificial neural network
approach, Energy Policy, 68 (2014) 371–382.
- L.S. Gomes, F.A.A. Souza, R.S.T. Pontes, T.R.F. Neto, R.A.M. Araújo,
Coagulant dosage determination in a water treatment plant
using dynamic neural network models, Int. J. Comput. Intell.
Appl., 14 (2015) 1–18.
- F. Fahimi, Z.M. Yaseen, A. El-shafie, Application of soft
computing based hybrid models in hydrological variables
modeling: a comprehensive review, Theor. Appl. Climatol.,
128 (2016) 1–29.
- Z.M. Yaseen, M.F. Allawi, A.A. Yousif, O. Jaafar,
F.M. Hamzah, A. El-Shafie, Non-tuned machine learning
approach for hydrological time series forecasting, Neural
Comput. Appl.,30 (2018) 1479–1491.
- R. Eisinga, M. Te Grotenhuis, B. Pelzer, The reliability of a
two-item scale: Pearson, Cronbach, or Spearman-brown?,
Int. J. Public Health, 58 (2013) 637–642.
- S.I. Abba, A.G. Usman, S. Isik, Simulation for response surface
in the HPLC optimization method development using artificial
intelligence models: a data-driven approach, Lab. Syst.,
201 (2020) 104007, doi: 10.1016/j.chemolab.2020.104007.
- K.P. Singh, A. Basant, A. Malik, G. Jain, Artificial neural network
modeling of the river water quality — a case study, 220 (2009)
888–895.
- G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series
Analysis: Forecasting and Control, John Wiley & Sons, 2015.
- K.E. Taylor, Summarizing multiple aspects of model
performance in a single diagram, J. Geophys. Res., 106 (2001)
7183–7192.
- S. Zhu, S. Heddam, E.K. Nyarko, M. Hadzima-Nyarko,
S. Piccolroaz, S. Wu, Modeling daily water temperature for
rivers: comparison between adaptive neuro-fuzzy inference
systems and artificial neural networks models, Environ. Sci.
Pollut. Res., 26 (2019) 402–420.
- A. Najah, A. El-Shafie, O.A. Karim, A.H. El-Shafie, Performance
of ANFIS versus MLP-NN dissolved oxygen prediction models
in water quality monitoring, Environ. Sci. Pollut. Res., 21 (2014)
1658–1670.