References
- T. Zhang, X.S. Wu, S.M. Shaheen, Q. Zhao, X.J. Liu, J. Rinklebe,
H.Q. Ren, Ammonium nitrogen recovery from digestate by
hydrothermal pretreatment followed by activated hydrochar
sorption, Chem. Eng. J., 379 (2020) 122254, https://doi.org/10.1016/j.cej.2019.122254.
- C. Jin, M.F. Yao, H.F. Liu, C.-F.F. Lee, J. Ji, Progress in the
production and application of n-butanol as a biofuel, Renewable
Sustainable Energy Rev., 15 (2011) 4080–4106.
- D. Mackay, N. de Sieyes, M. Einarson, K. Feris, A. Pappas, I.
Wood, L. Jacobsen, L. Justice, M. Noske, J. Wilson, C. Adair, K.
Scow, Impact of ethanol on the natural attenuation of MTBE in
a normally sulfate-reducing aquifer, Environ. Sci. Technol., 41
(2007) 2015–2021.
- J.T. Moss, A.M. Berkowitz, M.A. Oehlschlaeger, J. Biet, V. Warth,
P.-A. Glaude, F. Battin-Leclerc, An experimental and kinetic
modeling study of the oxidation of the four isomers of butanol,
J. Phys. Chem. A, 112 (2008) 10843–10855.
- G. Black, H.J. Curran, S. Pichon, J.M. Simmie, V. Zhukov, Biobutanol:
combustion properties and detailed chemical kinetic
model, Combust. Flame, 157 (2010) 363–373.
- J.X. Zhang, L.J. Wei, X.J. Man, X. Jiang, Y.J. Zhang, E.J. Hu,
Z.H. Huang, Experimental and modeling study of n-butanol
oxidation at high temperature, Energy Fuels, 26 (2012)
3368–3380.
- T.F. Lu, C.K. Law, A directed relation graph method for
mechanism reduction, Proc. Combust. Inst., 30 (2005) 1333–1341.
- P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagationbased
reduction method for large chemical kinetic mechanisms,
Combust. Flame, 154 (2008) 67–81.
- W.T. Sun, Z. Chen, X.L. Gou, Y.G. Ju, A path flux analysis method
for the reduction of detailed chemical kinetic mechanisms,
Combust. Flame, 157 (2010) 1298–1307.
- Z.Y. Luo, T.F. Lu, M.J. Maciaszek, S. Som, D.E. Longman,
A reduced mechanism for high-temperature oxidation of
biodiesel surrogates, Energy Fuels, 24 (2010) 6283–6293.
- T.F. Lu, C.K. Law, Strategies for mechanism reduction for large
hydrocarbons: n-heptane, Combust. Flame, 154 (2008) 153–163.
- S.H. Lam, D.A. Goussis, The CSP method for simplifying
kinetics, Int. J. Chem. Kinet., 26 (1994) 461–486.
- J.-Y. Chen, A general procedure for constructing reduced
reaction mechanisms with given independent relations,
Combust. Sci. Technol., 57 (1988) 89–94.
- U. Maas, S.B. Pope, Simplifying chemical kinetics: intrinsic lowdimensional
manifolds in composition space, Combust. Flame,
88 (1992) 239–264.
- Y.M. Fang, Q.D. Wang, F. Wang, X.Y. Li, Reduction of the
detailed kinetic mechanism for high-temperature combustion
of n-dodecane, Acta Phys. Chim. Sin., 28 (2012) 2536–2542.
- Q.-D. Wang, Y.-M. Fang, F. Wang, X.-Y. Li, Skeletal mechanism
generation for high-temperature oxidation of kerosene
surrogates, Combust. Flame, 159 (2012) 91–102.
- S.H. Li, J.W. Liu, R. Li, F. Wang, N.X. Tan, X.Y. Li, Automatic
chemistry mechanism reduction on hydrocarbon fuel
combustion, Chem. J. Chin. Univ., 36 (2015) 1576–1587.