References
- T.R.P. Kekuda, K.S. Shobha, R. Onkarappa, Studies on
antioxidant and anthelmintic activity of two Streptomyces species isolated from Western Ghat soils of Agumbe, Karnataka,
J. Pharm. Res., 3 (2010) 26–29.
- D. Coleman, M. Callaham, D. Crossley, Jr., Fundamentals of
Soil Ecology, Academic Press, 2017.
- C.L. Ventola, The antibiotic resistance crisis: part 1: causes
and threats, Pharm. Ther., 40 (2015) 277.
- Rate Review Annual Report, United States Department of
Health and Human Services, USA, 2013.
- National Centre for Biotechnology Information (NCBI),
PubChem Database. Available at: htttp://www.ncbi.mlm.nih.
gov. (accessed on June 12, 2019).
- K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar,
MEGA6: molecular evolutionary genetics analysis version 6.0,
Mol. Biol. Evol., 30 (2013) 2725–2729.
- N. Saitou, M. Nei, The neighbour-joining method: a new
method for reconstructing phylogenetic trees, Mol. Biol. Evol.,
4 (1987) 406–425.
- A. Wanger, In: R. Schwalbe, L.S. Moore, A.C. Goodwin, Eds.,
Antimicrobial Susceptibility Testing Protocols, CRC Press, 2007,
pp. 53–73.
- I. Borodina, J. Siebring, J. Zhang, C.P. Smith, G.V. Keulen,
L. Dijkhuizen, J. Nielsen, Antibiotic overproduction in Streptomyces
coelicolor A3 (2) mediated by phosphofructokinase
deletion, J. Biol. Chem., 283 (2008) 25186–25199.
- K.H. Wallhausser, G. Nesemann, P. Prave A. Steigler, Moenomycin,
a new antibiotic. I. Fermentation and isolation,
Antimicrob. Agents Chemother., 5 (1965) 734–736.
- F.L. Weisenborn, J.L. Bouchard, D. Smith, F. Pansy, G. Maestrone,
G. Miraglia, E. Meyers, The prasinomycins: antibiotics
containing phosphorus, Nature, 213 (1967) 1092.
- S.J. Box, M. Cole, G.H. Yeoman, Prasinons A and B: Potent
insecticides from Streptomyces prasinus, Appl. Environ.
Microbiol., 26 (1973) 699–704.
- T. Taguchi, T. Awakawa, Y. Nishihara, M. Kawamura,
Y. Ohnishi, K. Ichinose, Bifunctionality of ActIV as a Cyclase-Thioesterase revealed by in vitro reconstitution of actinorhodin
biosynthesis in Streptomyces coelicolor A3 (2), ChemBioChem,
18 (2017) 316–323.
- S.H.C. Mak, The Molecular Action of Actinorhodin, An
Antibiotic Produced by Streptomyces coelicolor, Doctoral
dissertation, 2017.
- B.A. Rudd, D.A. Hopwood, Genetics of actinorhodin biosynthesis
by Streptomyces coelicolor A3 (2), Microbiology,
114 (1979) 35–43.
- Y. Wang, X. Fang, Y. Cheng, X. Zhang, Manipulation of pH shift
to enhance the growth and antibiotic activity of Xenorhabdus
nematophila, J. Biomed. Biotechnol., (2011) 1–9.
- I.L. Bartek, M.J. Reichlen, R.W. Honaker, R.L. Leistikow,
E.T. Clambey, M.S. Scobey, A.B. Hinds, S.E. Born, C.R. Covey,
M.J. Schurr, A.J. Lenaerts, M.I. Voskuil, Antibiotic bactericidal
activity is countered by maintaining pH homeostasis in
Mycobacterium smegmatis, Am. Soc. Microbiol., 1 (2016)
e00176–16.
- P. Grenni, V. Ancona, A.B. Caracciolo, Ecological effects of
antibiotics on natural ecosystems: a review, Microchem. J.,
136 (2018) 25–39.
- M. Cihák, Z. Kameník, K. Šmídová, N. Bergman, O. Benada,
O. Kofronová, K. Petrícková, J. Bobek, Secondary metabolites
produced during the germination of Streptomyces coelicolor,
Front. Microbiol., 8 (2017) 1–13.
- S. Velayudham, K. Murugan, Sequential optimization approach
for enhanced production of antimicrobial compound from
Streptomyces rochei BKM-4, South Indian J. Biol. Sci., 1 (2015)
72–79.
- S.A.E. El-sayed, M.A. Rizk, N. Yokoyama, I. Igarashi, Evaluation
of the in vitro and in vivo inhibitory effect of thymoquinone on
piroplasm parasites, Parasites Vectors, 12 (2019) 1–10.
- A.V.D. Meij, S.F. Worsley, M.I. Hutchings, G.P.V. Wezel,
Chemical ecology of antibiotic production by actinomycetes,
FEMS Microbiol. Rev., 41 (2017) 392–416.
- A. Forero, M. Sánchez, A. Chávez, B. Ruiz, R. Rodríguez-Sanoja,
L. Servín-González, S. Sánchez, Possible involvement of the
sco2127 gene product in glucose repression of actinorhodin
production in Streptomyces coelicolor, Can. J. Microbiol.,
58 (2012) 1195–1201.