References
- W.N. Yang, J. Jian, Y.X. Li, Quantitative investigation of
eco-water with remote sensing, J. Chengdu Univ. Technol.,
2 (2008).
- W.N. Yang, Z.T. Qin, X. Yang, J. Jian, Y.X. Li, P.F. Pan, Novel
quantitative measurement of eco-water layer based on
quantitative remote sensing, J. Comput. Theor. Nanosci.,
12 (2015) 2837–2841.
- J. Huang, W.N. Yang, X. Yang, B. Deng, The influence of ecowater
retrieved by quantitative remote sensing on runoff in
upper Minjiang River basin, Earth Sci. Res. J., 20 (2016) E1–E6.
- R. Stone, Wenchuan earthquake a Deeply Scarred Land, Science,
324 (2009) 713–714.
- Z.Y. Ni, Z.Y. Yang, W.L. Li, Y.B. Zhao, Z.W. He, Decreasing
trend of geohazards induced by the 2008 Wenchuan earthquake
inferred from time series NDVI data, Remote Sens., 11 (2019),
doi: 10.3390/rs11192192.
- A.P. Yunus, X.M. Fan, X.L. Tang, D. Jie, Q. Xu, R.Q. Huang,
Decadal vegetation succession from MODIS reveals the spatiotemporal
evolution of post-seismic landsliding after the 2008
Wenchuan earthquake, Remote Sens. Environ., 236 (2020), doi:
10.1016/j.rse.2019.111476.
- H.C. Zeng, T. Lu, H. Jenkins, R.I. Negrón-Juárez, J.C. Xu,
Assessing earthquake-induced tree mortality in temperate
forest ecosystems: a case study from Wenchuan, China, Remote
Sens., 8 (2016), doi: 10.3390/rs8030252.
- L.L. Liu, Q.Q. Shao, J.Y. Liu, C.J. Yang, Estimation of forest
water conservation capacity in Qiongjiang River watershed,
Ecol. Environ. Sci., 22 (2013) 451–457.
- J. Bustamante, D. Aragones, I. Afan, Effect of protection level
in the hydroperiod of water bodies on Doñana’s Aeolian Sands,
Remote Sens., 8 (2016), doi: 10.3390/rs8100867.
- M. Falkenmark, J. Rockstrom, The new blue and green water
paradigm: breaking new ground for water resources planning
and management, J. Water Resour. Plann. Manage., 132 (2006)
129–132.
- M. Wigmosta, L. Vail, D. Lettenmaier, A distributed hydrologyvegetation
model for complex terrain, Water Resour. Res.,
30 (1994) 1665–1679.
- D.S. Chanasyk, E. Mapfumo, W. Williams, Quantification and
simulation of surface runoff from fescue grassland watersheds,
Agric. Water Manage., 59 (2003) 137–153.
- H. Langenberg, Hydrology: complex water future, Nat. Geosci.,
5 (2012) 849–849.
- L.H. Xiong, L. Zeng, Impacts of introducing remote sensing
soil moisture in calibrating a distributed hydrological model
for streamflow simulation, Water, 11 (2019), doi: 10.3390/
w11040666.
- S.N. Ni, J.L. Chen, C.R. Wilson, J. Li, X.G. Hu, R. Fu, Global
terrestrial water storage changes and connections to ENSO
events, Surv. Geophys., 39 (2018) 1–22.
- F. Zou, R. Tenzer, S.G. Jin, Water storage variations in Tibet
from GRACE, ICESat, and hydrological data, Remote Sens.,
11 (2019), doi: 10.3390/rs11091103.
- B. Mueller, M. Hirschi, S.I. Seneviratne, New diagnostic
estimates of variations in terrestrial water storage based on
ERA-Interim data, Hydrol. Process., 25 (2011) 996–1008.
- D.J. Cooper, J.S. Sanderson, D.I. Stannard, D.P. Groeneveld,
Effects of long-term water table drawdown on evapotranspiration
and vegetation in an arid region phreatophyte
community, J. Hydrol., 325 (2006) 21–34.
- C. Werner, M. Dubbert, Resolving rapid dynamics of soil-plant-
atmosphere interactions, New Phytol., 210 (2016) 767–769.
- V. Shelia, J. Simunek, K. Boote, G. Hoogenboom, Coupling
DSSAT and HYDRUS-1D for simulations of soil water dynamics
in the soil-plant-atmosphere system, J. Hydrol. Hydromech.,
66 (2018) 232–245.
- V. Levizzani, E. Cattani, Satellite remote sensing of precipitation
and the terrestrial water cycle in a changing climate,
Remote Sens., 11 (2019), doi: 10.3390/rs11192301.
- S.C. Mpala, A.S. Gagnon, M.G. Mansell, S.W. Hussey,
The hydrology of sand rivers in Zimbabwe and the use of
remote sensing to assess their level of saturation, Phys. Chem.
Earth, 93 (2016) 24–36.
- J.G. Kerenyi, Application of remote sensing for the
determination of water management parameters, Hungarian
Meteorol. Serv., 122 (2018) 1–13.
- M.N. Sultana, M.S. Hossain, G.A. Latifar, Water quality
assessment of Balu River, Dhaka Bangladesh, Water Conserv.
Manage., 3 (2019) 08–10.
- A. Maqbool, W. Hui, M.T. Sarwar, Nanotechnology
development for in-situ remediation of heavy metal (Loid)S
contaminated soil, Environ. Ecosyst. Sci., 3 (2019) 09–11.
- A. Samsudin, M.A.A. Samah, M.Y. Ishak, Perception of
government servants in Shah Alam on the utilization of
food waste as a resource for biogas production in Malaysia,
J. Clean WAS, 3 (2019) 16–20.
- R.Q. Huang, W.L. Li, Fault effect analysis of geo-hazard
triggered by Wen-Chuan earthquake, J. Eng. Geol., 17 (2009)
19–28.
- N. Koizumi, S. Minote, T. Tanaka, A. Mori, T. Ajiki, T. Sato,
H.A. Takahashi, N. Matsumoto, Hydrological changes after
the 2016 Kumamoto earthquake, Japan, Earth Planets Space,
71 (2019), doi: 10.1186/s40623-019-1110-y.
- D. Jakovljevic, Z. Lozanov-Crvenkovic, Water quality changes
after Kraljevo earthquake in 2010, Nat. Hazards, 79 (2015)
2033–2053.
- Y. Yamada, S. Kaga, Y. Kaga, K. Naiki, S. Watanabe, Changes
of seawater quality in Ofunto Bay, Iwate, after the 2011
off the Pacific coast of Tohoku earthquake, J. Oceanogr.,
73 (2017) 11–24.
- S. Uprety, P.Y. Hong, N. Sadik, B. Dangol, R. Adhikari,
A. Jutla, J.L. Shisler, P. Degnan, T.H. Nguyen, The effect of the
2015 earthquake on the bacterial community compositions
in water in Nepal, Front. Microbiol., 8 (2017), doi: 10.3389/
fmicb.2017.02380.
- M.A. Khan, M.L. Sharma, Kachchh (India) earthquake 2001
- causes, severity and impact on groundwater resources,
J. Environ. Sci., 15 (2003) 500–505.
- S.H. Lee, J.M. Lee, H. Yoon, Y. Kim, S. Hwang, K. Ha, Y. Kim,
Groundwater impacts from the M5.8 earthquake in Korea as
determined by integrated monitoring systems, Groundwater,
58 (2020) 951–961.
- K. Nakagawa, Z.Q. Yu, R. Berndtsson, T. Hosono, Temporal
characteristics of groundwater chemistry affected by the 2016
Kumamoto earthquake using self-organizing maps, J. Hydrol.,
582 (2020), doi: 10.1016/j.jhydrol.2019.124519.
- D. Parr, G.L. Wang, D. Bjerklie, Integrating remote sensing data
on evapotranspiration and leaf area index with hydrological
modeling: impacts on model performance and future
predictions, J. Hydrometeorol., 16 (2015) 2086–2100.
- G. Mendiguren, J. Koch, S. Stisen, Spatial pattern evaluation of
a calibrated national hydrological model - a remote-sensingbased
diagnostic approach, Hydrol. Earth Syst. Sci., 21 (2017)
5987–6005.
- C.M.M. Kittel, K. Nielsen, C. Tottrup, P. Bauer-Gottwein,
Informing a hydrological model of the Ogooue with multimission
remote sensing data, Hydrol. Earth Syst. Sci., 22 (2018)
1453–1472.
- J. Huang, W.N. Yang, L. Peng, M. Ashraf, Model of eco-water
driving force affecting the evolvement of runoff in the upper
Minjiang River Basin, Pol. Marit. Res., 23 (2016) 91–96.
- A.J. Richardson, C.L. Wiegand, Distinguishing vegetation
from soil background information, Photogramm. Eng. Remote
Sens., 43 (1977) 1541–1552.
- X.Y. Zhang, J.P. Li, Q.M. Qin, Y.J. Han, X.Y. Zhang, L.X. Wang,
J.D. Guan, Comparison and application of several drought
monitoring models in Ningxia, China, Trans. CSAE, 25 (2009)
18–23+317.
- X.J. Cheng, X.G. Xu, T.E. Chen, G.J. Yang, Z.H. Li, The new
method monitoring crop water content based on nir-red
spectrum feature space, Spectrosc. Spectral Anal., 34 (2014)
1542–1547.
- Q.M. Qin, L. You, Y. Zhao, S.H. Zhao, Y.J. Yao, Soil line
automatic identification algorithm based on two-dimensional
feature space, Trans. CSAE, 28 (2012) 167–171.
- P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, J. Gregoire,
Detecting vegetation leaf water content using reflectance in the
optical domain, Remote Sens. Environ., 77 (2001) 22–33.
- U. Hasan, M. Sawut, N. Kasim, N. Taxipulati, J.Z. Wang,
I. Ablat, Hyperspectral estimation model of leaf water content
in spring wheat based on grey relational analysis, Spectrosc.
Spectral Anal., 38 (2018) 3905–3911.
- P.F. Pan, W.N. Yang, J. Jian, X.A. Dai, Remote sensing retrieval
model of vegetation moisture content based on spectral
index: a case study in Maoergai of Minjiang River upstream,
Remote Sens. Inf., 28 (2013) 69–73.