References

  1. W.N. Yang, J. Jian, Y.X. Li, Quantitative investigation of eco-water with remote sensing, J. Chengdu Univ. Technol., 2 (2008).
  2. W.N. Yang, Z.T. Qin, X. Yang, J. Jian, Y.X. Li, P.F. Pan, Novel quantitative measurement of eco-water layer based on quantitative remote sensing, J. Comput. Theor. Nanosci., 12 (2015) 2837–2841.
  3. J. Huang, W.N. Yang, X. Yang, B. Deng, The influence of ecowater retrieved by quantitative remote sensing on runoff in upper Minjiang River basin, Earth Sci. Res. J., 20 (2016) E1–E6.
  4. R. Stone, Wenchuan earthquake a Deeply Scarred Land, Science, 324 (2009) 713–714.
  5. Z.Y. Ni, Z.Y. Yang, W.L. Li, Y.B. Zhao, Z.W. He, Decreasing trend of geohazards induced by the 2008 Wenchuan earthquake inferred from time series NDVI data, Remote Sens., 11 (2019), doi: 10.3390/rs11192192.
  6. A.P. Yunus, X.M. Fan, X.L. Tang, D. Jie, Q. Xu, R.Q. Huang, Decadal vegetation succession from MODIS reveals the spatiotemporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake, Remote Sens. Environ., 236 (2020), doi: 10.1016/j.rse.2019.111476.
  7. H.C. Zeng, T. Lu, H. Jenkins, R.I. Negrón-Juárez, J.C. Xu, Assessing earthquake-induced tree mortality in temperate forest ecosystems: a case study from Wenchuan, China, Remote Sens., 8 (2016), doi: 10.3390/rs8030252.
  8. L.L. Liu, Q.Q. Shao, J.Y. Liu, C.J. Yang, Estimation of forest water conservation capacity in Qiongjiang River watershed, Ecol. Environ. Sci., 22 (2013) 451–457.
  9. J. Bustamante, D. Aragones, I. Afan, Effect of protection level in the hydroperiod of water bodies on Doñana’s Aeolian Sands, Remote Sens., 8 (2016), doi: 10.3390/rs8100867.
  10. M. Falkenmark, J. Rockstrom, The new blue and green water paradigm: breaking new ground for water resources planning and management, J. Water Resour. Plann. Manage., 132 (2006) 129–132.
  11. M. Wigmosta, L. Vail, D. Lettenmaier, A distributed hydrologyvegetation model for complex terrain, Water Resour. Res., 30 (1994) 1665–1679.
  12. D.S. Chanasyk, E. Mapfumo, W. Williams, Quantification and simulation of surface runoff from fescue grassland watersheds, Agric. Water Manage., 59 (2003) 137–153.
  13. H. Langenberg, Hydrology: complex water future, Nat. Geosci., 5 (2012) 849–849.
  14. L.H. Xiong, L. Zeng, Impacts of introducing remote sensing soil moisture in calibrating a distributed hydrological model for streamflow simulation, Water, 11 (2019), doi: 10.3390/ w11040666.
  15. S.N. Ni, J.L. Chen, C.R. Wilson, J. Li, X.G. Hu, R. Fu, Global terrestrial water storage changes and connections to ENSO events, Surv. Geophys., 39 (2018) 1–22.
  16. F. Zou, R. Tenzer, S.G. Jin, Water storage variations in Tibet from GRACE, ICESat, and hydrological data, Remote Sens., 11 (2019), doi: 10.3390/rs11091103.
  17. B. Mueller, M. Hirschi, S.I. Seneviratne, New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data, Hydrol. Process., 25 (2011) 996–1008.
  18. D.J. Cooper, J.S. Sanderson, D.I. Stannard, D.P. Groeneveld, Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community, J. Hydrol., 325 (2006) 21–34.
  19. C. Werner, M. Dubbert, Resolving rapid dynamics of soil-plant- atmosphere interactions, New Phytol., 210 (2016) 767–769.
  20. V. Shelia, J. Simunek, K. Boote, G. Hoogenboom, Coupling DSSAT and HYDRUS-1D for simulations of soil water dynamics in the soil-plant-atmosphere system, J. Hydrol. Hydromech., 66 (2018) 232–245.
  21. V. Levizzani, E. Cattani, Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate, Remote Sens., 11 (2019), doi: 10.3390/rs11192301.
  22. S.C. Mpala, A.S. Gagnon, M.G. Mansell, S.W. Hussey, The hydrology of sand rivers in Zimbabwe and the use of remote sensing to assess their level of saturation, Phys. Chem. Earth, 93 (2016) 24–36.
  23. J.G. Kerenyi, Application of remote sensing for the determination of water management parameters, Hungarian Meteorol. Serv., 122 (2018) 1–13.
  24. M.N. Sultana, M.S. Hossain, G.A. Latifar, Water quality assessment of Balu River, Dhaka Bangladesh, Water Conserv. Manage., 3 (2019) 08–10.
  25. A. Maqbool, W. Hui, M.T. Sarwar, Nanotechnology development for in-situ remediation of heavy metal (Loid)S contaminated soil, Environ. Ecosyst. Sci., 3 (2019) 09–11.
  26. A. Samsudin, M.A.A. Samah, M.Y. Ishak, Perception of government servants in Shah Alam on the utilization of food waste as a resource for biogas production in Malaysia, J. Clean WAS, 3 (2019) 16–20.
  27. R.Q. Huang, W.L. Li, Fault effect analysis of geo-hazard triggered by Wen-Chuan earthquake, J. Eng. Geol., 17 (2009) 19–28.
  28. N. Koizumi, S. Minote, T. Tanaka, A. Mori, T. Ajiki, T. Sato, H.A. Takahashi, N. Matsumoto, Hydrological changes after the 2016 Kumamoto earthquake, Japan, Earth Planets Space, 71 (2019), doi: 10.1186/s40623-019-1110-y.
  29. D. Jakovljevic, Z. Lozanov-Crvenkovic, Water quality changes after Kraljevo earthquake in 2010, Nat. Hazards, 79 (2015) 2033–2053.
  30. Y. Yamada, S. Kaga, Y. Kaga, K. Naiki, S. Watanabe, Changes of seawater quality in Ofunto Bay, Iwate, after the 2011 off the Pacific coast of Tohoku earthquake, J. Oceanogr., 73 (2017) 11–24.
  31. S. Uprety, P.Y. Hong, N. Sadik, B. Dangol, R. Adhikari, A. Jutla, J.L. Shisler, P. Degnan, T.H. Nguyen, The effect of the 2015 earthquake on the bacterial community compositions in water in Nepal, Front. Microbiol., 8 (2017), doi: 10.3389/ fmicb.2017.02380.
  32. M.A. Khan, M.L. Sharma, Kachchh (India) earthquake 2001 - causes, severity and impact on groundwater resources, J. Environ. Sci., 15 (2003) 500–505.
  33. S.H. Lee, J.M. Lee, H. Yoon, Y. Kim, S. Hwang, K. Ha, Y. Kim, Groundwater impacts from the M5.8 earthquake in Korea as determined by integrated monitoring systems, Groundwater, 58 (2020) 951–961.
  34. K. Nakagawa, Z.Q. Yu, R. Berndtsson, T. Hosono, Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps, J. Hydrol., 582 (2020), doi: 10.1016/j.jhydrol.2019.124519.
  35. D. Parr, G.L. Wang, D. Bjerklie, Integrating remote sensing data on evapotranspiration and leaf area index with hydrological modeling: impacts on model performance and future predictions, J. Hydrometeorol., 16 (2015) 2086–2100.
  36. G. Mendiguren, J. Koch, S. Stisen, Spatial pattern evaluation of a calibrated national hydrological model - a remote-sensingbased diagnostic approach, Hydrol. Earth Syst. Sci., 21 (2017) 5987–6005.
  37. C.M.M. Kittel, K. Nielsen, C. Tottrup, P. Bauer-Gottwein, Informing a hydrological model of the Ogooue with multimission remote sensing data, Hydrol. Earth Syst. Sci., 22 (2018) 1453–1472.
  38. J. Huang, W.N. Yang, L. Peng, M. Ashraf, Model of eco-water driving force affecting the evolvement of runoff in the upper Minjiang River Basin, Pol. Marit. Res., 23 (2016) 91–96.
  39. A.J. Richardson, C.L. Wiegand, Distinguishing vegetation from soil background information, Photogramm. Eng. Remote Sens., 43 (1977) 1541–1552.
  40. X.Y. Zhang, J.P. Li, Q.M. Qin, Y.J. Han, X.Y. Zhang, L.X. Wang, J.D. Guan, Comparison and application of several drought monitoring models in Ningxia, China, Trans. CSAE, 25 (2009) 18–23+317.
  41. X.J. Cheng, X.G. Xu, T.E. Chen, G.J. Yang, Z.H. Li, The new method monitoring crop water content based on nir-red spectrum feature space, Spectrosc. Spectral Anal., 34 (2014) 1542–1547.
  42. Q.M. Qin, L. You, Y. Zhao, S.H. Zhao, Y.J. Yao, Soil line automatic identification algorithm based on two-dimensional feature space, Trans. CSAE, 28 (2012) 167–171.
  43. P. Ceccato, S. Flasse, S. Tarantola, S. Jacquemoud, J. Gregoire, Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77 (2001) 22–33.
  44. U. Hasan, M. Sawut, N. Kasim, N. Taxipulati, J.Z. Wang, I. Ablat, Hyperspectral estimation model of leaf water content in spring wheat based on grey relational analysis, Spectrosc. Spectral Anal., 38 (2018) 3905–3911.
  45. P.F. Pan, W.N. Yang, J. Jian, X.A. Dai, Remote sensing retrieval model of vegetation moisture content based on spectral index: a case study in Maoergai of Minjiang River upstream, Remote Sens. Inf., 28 (2013) 69–73.