References

  1. UNFCCC, Adoption of the Paris Agreement, United Nations Framework Convention on Climate Change, Paris, 2015. Available at: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
  2. UNFCCC, Progress Tracker: Work Programme Resulting from the Relevant Requests Contained in Decision 1/CP.21, United Nations Framework Convention on Climate Change, Paris, 2017. Available at: https://unfccc.int/sites/default/files/resource/ pa_progress_tracker_200617.pdf (Accessed 12 January 2019).
  3. S.H. Chae, J.H. Kim, Y.M. Kim, S.-H. Kim, J.H. Kim, Economic analysis on environmentally sound brine disposal with RO and RO-hybrid processes, Desal. Water Treat., 78 (2017) 1–11.
  4. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  5. J.H. Kim, S.-H. Kim, J.H. Kim, Pressure retarded osmosis process: current status and future, J. Korean Soc. Environ. Eng., 36 (2014) 791–802.
  6. S.J. Lim, S.J. Ki, J.W. Seo, S.H. Chae, Y.G. Lee, K.H. Jeong, J.S. Park, J.H. Kim, Evaluating the performance of extended and unscented Kalman filters in the reverse osmosis process, Desal. Water Treat., 163 (2019) 118–124.
  7. S.J. Lim, Y.M. Kim, H. Park, S.J. Ki, K.H. Jeong, J.W. Seo, S.H. Chae, J.H. Kim, Enhancing accuracy of membrane fouling prediction using hybrid machine learning models, Desal. Water Treat., 146 (2019) 22–28.
  8. S.H. Chae, Y.M. Kim, H. Park, J.W. Seo, S.J. Lim, J.H. Kim, Modeling and simulation studies analyzing the pressureretarded osmosis (PRO) and PRO-hybridized processes, Energies, 12 (2019) 243, https://doi.org/10.3390/en12020243.
  9. K. Touati, F. Tadeo, S.H. Chae, J.H. Kim, O. Alvarez-Silva, Pressure Retarded Osmosis: Renewable Energy Generation and Recovery, Academic Press, 2017.
  10. C.M. Lee, S.H. Chae, E.M. Yang, S.H. Kim, J.H. Kim, I.S. Kim, A comprehensive review of the feasibility of pressure retarded osmosis: recent technological advances and industrial efforts towards commercialization, Desalination, 491 (2020) 114501, https://doi.org/10.1016/j.desal.2020.114501.
  11. S.H. Chae, J.H. Kim, Chapter 10 – Recent Issues Relative to a Low Salinity Pressure-Retarded Osmosis Process and Suggested Technical Solutions, S. Sarp, N. Hilal, Ed., Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation, Elsevier, 2018, pp. 273–295.
  12. A. Tal, Addressing desalination’s carbon footprint: the Israeli experience, Water, 10 (2018), https://doi.org/10.3390/ w10020197.
  13. P.A. Davies, Q. Yuan, R. de Richter, Desalination as a negative emissions technology, Environ. Sci. Water Res. Technol., 4 (2018) 839–850.
  14. S.H. Chae, J.W. Seo, J.H. Kim, Y.M. Kim, J.H. Kim, A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation, Desalination, 444 (2018) 118–128.
  15. S.B. Jason Anderson, T. Dworak, M. Fergusson, C. Lasser, O. Le Mat, V. Matteib, P. Strosser, Potential Impacts of Desalination Development on Energy Consumption, Institute for European Environmental Policy, 2008.
  16. H. Cooley, M. Heberger. Key Issues for Seawater Desalination in California: Energy and Greenhouse Gas Emissions, Pacific Institute, 2013.
  17. GWI, Desalination and Water Reuse, Global Water Intelligence, 2017.
  18. NSO, Future Population Trend 2015–2065, National Statistical Office of Korea, 2016.
  19. Korean Federation for Environmental Movement, Distribution Prospect of Renewable Energy Facilities in Korea, The Korean Federation for Environmental Movement, 2017.