References

  1. T.M. Albayati, K.R. Kalash, Polycyclic aromatic hydrocarbons adsorption from wastewater using different types of prepared mesoporous materials MCM-41 in batch and fixed bed column, Process Saf. Environ. Prot., 133 (2020) 124–136.
  2. S.A. Younis, N.S. El-Gendy, W.I. El-Azab, Y.M. Moustafa, Kinetic, isotherm, and thermodynamic studies of polycyclic aromatic hydrocarbons biosorption from petroleum refinery wastewater using spent waste biomass, Desal. Water Treat., 56 (2015) 3013–3023.
  3. K.R. Kalash, M.H. Al-Furaiji, B.I. Waisi, R.A. Ali, Evaluation of adsorption performance of phenol using non-calcined Mobil composition of matter no. 41 particles, Desal. Water Treat., 198 (2020) 232–240.
  4. Y.A. Abd Al-Khodor, T.M. Albayati, Employing sodium hydroxide in desulfurization of the actual heavy crude oil: theoretical optimization and experimental evaluation, Process Saf. Environ. Prot., 136 (2020) 334–342.
  5. H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Pet., 25 (2015) 107–123.
  6. USEPA Environmental Protection Agency, Polycyclcic Aromatic Hydrocarbons (PAHs) United States Office of Solid Waste, Washington D.C., 2008.
  7. F. Benyahia, M. Abdulkarim, A. Embaby, M. Rao, Refinery Wastewater Treatment: A True Technological Challenge, The Seventh Annual U.A.E. University Research Conference, U.A.E., 2006.
  8. R.A. Geyer, Polycyclic aromatic hydrocarbons in the aquatic environment, Mar. Chem., 10 (1981) 167–168.
  9. M.H. El-Naas, R. Surkatti, S. Al-Zuhair, Petroleum refinery wastewater treatment: a pilot scale study, J. Water Process Eng., 14 (2016) 71–76.
  10. T.M. Albayati, A.A. Sabri, D.B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desal. Water Treat., 174 (2020) 301–310.
  11. T.M. Albayati, A.M. Doyle, Purification of aniline and nitrosubstituted aniline contaminants from aqueous solution using beta zeolite, Chem.: Bulgarian J. Sci. Educ., 23 (2014) 105–114.
  12. J. Guo, F. Ma, C.-C. Chang, D. Cui, L. Wang, J. Yang, L. Wang, Start-up of a two-stage bioaugmented anoxic–oxic (A/O) biofilm process treating petrochemical wastewater under different DO concentrations, Bioresour. Technol., 100 (2009) 3483–3488.
  13. D.T. Sponza, R. Oztekin, Removals of PAHs and acute toxicity via sonication in a petrochemical industry wastewater, Chem. Eng., 162 (2010) 142–150.
  14. A.M. Alkafajy, T.M. Albayati, High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation, Mater. Today Commun., 23 (2020) 100890, https://doi.org/10.1016/j.mtcomm.2019.100890.
  15. M.H. Al-Furaiji, J.T. Arena, M. Chowdhury, N. Benes, A. Nijmeijer, J.R. McCutcheon, Use of forward osmosis in treatment of hyper-saline water, Desal. Water Treat., 133 (2018) 1–9.
  16. K.R. Kalash, H.A. Alalwan, M.H. Al-Furaiji, A.H. Alminshid, B.I. Waisi, Isothermal and kinetic studies of the adsorption removal of Pb(II), Cu(II), and Ni(II) ions from aqueous solutions using modified Chara sp. algae, Korean Chem. Eng. Res., 58 (2020) 301–306.
  17. H. Alalwan, A. Alminshid, An in-situ DRIFTS study of acetone adsorption mechanism on TiO2 nanoparticles, Spectrochim. Acta, Part A, 229 (2020) 117–990.
  18. K.R. Kalash, M.A. Kadhom, M.H. Al-Furaiji, Short-cut nitrification of Iraqi municipal wastewater for nitrogen removal in a single reactor, Mater. Sci. Eng., 518 (2019) 22–24.
  19. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of methyl green dye onto MCM-41: equilibrium, kinetics and thermodynamic studies, Desal. Water Treat., 179 (2020) 323–331.
  20. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay, Chin. J. Chem. Eng., (2020), (In Press), https://doi.org/10.1016/j. cjche.2020.07.031.
  21. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater, Chem. Eng. Process. Process Intensif., 157 (2020) 108113, https://doi.org/10.1016/j.cep.2020.108113.
  22. M. Kadhom, N. Albayati, S. Salih, M. Al-Furaiji, M. Bayati, B. Deng, Role of cellulose micro and nano crystals in thin film and support layer of nanocomposite membranes for brackish water desalination, Membranes, 9 (2019) 101, https://doi.org/ 10.3390/ membranes9080101.
  23. M.N. Abbas, T.H. Nussrat, A statistical analysis of experimental data for the adsorption process of cadmium by watermelon rinds in a continuous packed bed column, Int. J. Innovation Creativity Change, 13 (2020) 124–138.
  24. D.A. Aljuboury, H.B. Abdul Aziz, S. Feroz, Treatment of petroleum wastewater by conventional and new technologies – a review, Global Nest J., 19 (2017) 439–452.
  25. V.F.L. Cavalcanti, C.A.M. Abreu, M.N. Carvalho, M.A. Motta Sobrinho, M. Benachour, O.S. Baraúna, Removal of effluent from petrochemical wastewater by adsorption using organoclay, Petrochemicals, (2012), doi: 10.5772/37200.
  26. S. Sathian, M. Rajasimman, C.S. Rathnasabapathy, C. Karthikeyan, Performance evaluation of SBR for the treatment of dyeing wastewater by simultaneous biological and adsorption processes, Water Process Eng., 4 (2014) 82–90.
  27. M.H. Muhamad, S.R. Sheikh Abdullah, A.B. Mohamad, R. Abdul Rahman, A.A. Hasan Kadhum, Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), Environ. Manage., 121 (2013) 179–190.
  28. W.H.W. Osman, S.R.S. Abdullah, A.B. Mohamad, A.A.H. Kadhum, R.A. Rahman, Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR, J. Environ. Manage., 121 (2013) 80–86.
  29. A. Balati, A. Shahbazi, M.M. Amini, S.H. Hashemi, K. Jadidi, Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water, Eur. J. Environ. Sci., 4 (2011) 69–76.
  30. M. Anbia, S.E. Moradi, Removal of naphthalene from petrochemical wastewater streams using carbon nanoporous adsorbent, Appl. Surf. Sci., 255 (2009) 5041–5047.
  31. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column, Heliyon. 6 (2020) e03253, https://doi.org/10.1016/j.heliyon.2020.e03253.
  32. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 1980.
  33. HACH, Water Analysis Handbook, HACH Company, Color, USA, 2002.
  34. WHO, Polynuclear Aromatic Hydrocarbons in Drinking Water, World Health Organization, Geneva, 2003.
  35. J.K. Al-Saad, S.M. Shamshoom, J.K. Abaychi, Seasonal distribution of dissolved and particulate hydrocarbons in Shatt Al-Arab Estuary and North-West Arabian Gulf, Mar. Pollut. Bull., 36 (1998) 850–855.
  36. S.M. Al-Saad, J.K. Abaychi, S.M. Shamshoom, Hydro-carbons in the waters and sediments of Shatt Al-Arab Estuary and NW-Arabian Gulf, Mar. Mesopotamica, 11 (1995) 135–148.
  37. A. Al-Timari, Oil pollution in Shatt Al-Arab water studying the monthly variation of polycyclic aromatic hydrocarbons (PAHs), Mar. Mesopotamica, 15 (2000) 535–548.
  38. S. Nasher, L.Y. Heng, Z. Zakaria, S. Surif, Concentrations and sources of polycyclic aromatic hydrocarbons in the seawater around Langkawi Island, Malaysia, Chemistry (Easton), 2013 (2013) 975781, https://doi.org/10.1155/2013/975781.
  39. M.H. El-Naas, S. Al-Zuhair, M.A. Alhaija, Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, J. Hazard. Mater., 173 (2009) 750–757.
  40. C.B. Vidal, A.L. Barros, C.P. Moura, A.C.A. de Lima, F.S. Dias, L.C.G. Vasconcellos, P.B.A. Fechine, R.F. Nascimento, Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica, J. Colloid Interface Sci., 357 (2011) 466–473.
  41. M. Yuan, S. Tong, S. Zhao, C.Q. Jia, Adsorption of polycyclic aromatic hydrocarbons from water using petroleum cokederived porous carbon, J. Hazard. Mater., 181 (2010) 1115–1120.
  42. R.S. Araújo, D.C.S. Azevedo, C.L. Cavalcante, A. Jiménez- López, E. Rodríguez-Castellón, Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: influence of the surface acidity, Microporous Mesoporous Mater., 108 (2008) 213–222.
  43. J.A. Costa, R. Anjos, C.M.P. da Silva, L.P.C. Romão, Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve, Powder Technol., 308 (2017) 434–441.
  44. R. Crisafully, M.A.L. Milhome, R.M. Cavalcante, E.R. Silveira, D. De Keukeleire, R.F. Nascimento, Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin, Bioresour. Technol., 99 (2008) 4515–4519.
  45. J.A.S. Costa, V.H.V. Sarmento, L.P.C. Romão, C.M. Paranhos, Performance of the MCM-41-NH2 functionalized mesoporous material synthetized from the rice husk ash on the removal of the polycyclic aromatic hydrocarbons, Silicon, 12 (2020) 1913–1923.
  46. M.H. El-Naas, M.A. Alhaija, S. Al-Zuhair, Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater, Environ. Sci. Pollut. Res., 24 (2017) 7511–7520.
  47. D. Miskovic, B. Dalmacija, Z. Zivanov, An investigation of the treatment and recycling of oil refinery wastewater, Water Sci. Technol., 18 (1986) 105–114.
  48. A.E.A. Nayl, R.A. Elkhashab, T. El Malah, S.M. Yakout, M.A. El-Khateeb, M.M.S. Ali, H.M. Ali, Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste, Environ. Sci. Pollut. Res., 24 (2017) 22284–22293.