References

  1. A. Blackman, R. Morgenstern, L. Montenegro, J. García de Brigard, Review of the Efficiency and Effectiveness of Colombia’s Environmental Policies, An RFF Report, 2006.
  2. R. Herrera-Aristizábal, J. Salgado-Dueñas, Y. Peralta-Ruiz, A. González-Delgado, Environmental evaluation of a palmbased biorefinery under North-Colombian conditions, Chem. Eng. Trans., 57 (2017) 193–198.
  3. K. Rodríguez-Cáceres, F.G. Blanco-Patiño, J.A. Araque-Duarte, V. Kafarov, Assessment of the energy potential of agricultural residues in non-interconnected zones of Colombia: case study of Chocó and Putumayo, Chem. Eng. Sci., 50 (2016) 349–354.
  4. I. Paz-Astudillo, C. Rivera-Barrero, L. Buelvas, Puello, G. Franco-Arnedo, D. Marsiglia-Lopez, Diagnostic of the main agricultural residues produced in the Bolivar region, Sci. Agroaliment., 2 (2015) 39–50.
  5. L.E. Rincón, J. Moncada, C.A. Cardona, Analysis of potential technological schemes for the development of oil palm industry in Colombia: a biorefinery point of view, Ind. Crops Prod., 52 (2014) 457–465.
  6. L.E. Rincón, M.J. Valencia, V. Hernández, L.G. Matallana, C.A. Cardona, Optimization of the Colombian biodiesel supply chain from oil palm crop based on techno-economical and environmental criteria, Energy Econ., 47 (2020) 154–167.
  7. Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, Y. Zhang, Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review, Chemosphere, 211 (2018) 235–253.
  8. C. Tejada-Tovar, A. Gonzalez-Delgado, A. Villabona-Ortiz, Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution, Appl. Sci., 9 (2019) 1–14.
  9. J. Lara, C. Tejada-Tovar, A. Villabona-Ortíz, A. Arrieta, Adsorption of lead and cadmium in continuous of fixed bed on cocoa waste, Rev. Ion, 29 (2016) 113–124.
  10. Á. García-Padilla, K. Moreno-Sader, A. Realpe, M. Acevedo-Morantes, J.B.P. Soares, Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite, Sustainable Chem. Pharm., 17 (2020) 1–13, doi:10.1016/j. scp.2020.100292.
  11. K. Moreno-Sader, A. García-Padilla, A. Realpe, M. Acevedo-Morantes, J. Soares, Removal of heavy metal water pollutants (Co2+ and Ni2+) using polyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites, ACS Omega, 4 (2019) 10834–10844.
  12. S. Madala, S.K. Nadavala, S. Vudagandla, V.M. Boddu, K. Abburi, Equilibrium, kinetics and thermodynamics of cadmium(II) biosorption on to composite chitosan biosorbent, Arabian J. Chem., 10 (2017) S1883–S1893.
  13. A. Natasia, J. Febrianto, J. Sunarso, Y. Ju, N. Indraswati, S. Ismadji, Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta), J. Hazard. Mater., 180 (2010) 366–374.
  14. G. Huamán, L. Torem, Biosorción de Metales Pesados Contenidos en Efluentes Utilizando Biomasa Orgánica, Convención Minera Arequipa, 2009.
  15. C. Ardila, S. Carreño, Aprovechamiento de la Cáscara de la Mazorca de Cacao Como Adsorbente, Universidad Industrial de Santander, 2011.
  16. E. Soto, Estudio de la Remoción de Cu(II) en Medio Acuoso Utilizando el Albedo de la Cáscara de Naranja, Universidad Nacional de Ingenieria, 2009.
  17. P. Bartczak, M. Norman, Ł. Klapiszewski, N. Karwańska, M. Kawalec, M. Baczyńska, M. Wysokowski, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: a kinetic and equilibrium study, Arabian J. Chem., 11 (2018) 1209–1222.
  18. Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Tabbaa, Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk, Environ. Sci. Pollut. Res. Int., 24 (2017) 12809–12819.
  19. X. Zhang, X. Wang, Adsorption and desorption of Nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite, PLos One, 10 (2015) 1–21, doi: 10.1371/journal. pone.0117077.
  20. G. Kajjumba, S. Emik, A. Ongen, H. Ozcan, S. Aydin, Modelling of Adsorption Kinetic Processes—Errors, Theory and Application, S. Edebali, Ed., Advanced Sorption Process Applications, IntechOpen, 2018. Available at: https://www.intechopen.com/ books/advanced-sorption-process-applications/modelling-ofadsorption- kinetic-processes-errors-theory-and-application
  21. K. Kowanga, E. Gatebe, G. Mautin, E. Mauti, Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder, J. Phytopharmacol., 5 (2016) 71–78.
  22. E. Da’Na, A. Awad, Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption, J. Environ. Chem. Eng., 5 (2017) 3091–1099.
  23. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multiwalled carbon nanotube, J. Nanostruct. Chem., 55 (2013) 1–6.