References
- A. Blackman, R. Morgenstern, L. Montenegro, J. García
de Brigard, Review of the Efficiency and Effectiveness of
Colombia’s Environmental Policies, An RFF Report, 2006.
- R. Herrera-Aristizábal, J. Salgado-Dueñas, Y. Peralta-Ruiz,
A. González-Delgado, Environmental evaluation of a palmbased
biorefinery under North-Colombian conditions, Chem.
Eng. Trans., 57 (2017) 193–198.
- K. Rodríguez-Cáceres, F.G. Blanco-Patiño, J.A. Araque-Duarte,
V. Kafarov, Assessment of the energy potential of agricultural
residues in non-interconnected zones of Colombia: case study
of Chocó and Putumayo, Chem. Eng. Sci., 50 (2016) 349–354.
- I. Paz-Astudillo, C. Rivera-Barrero, L. Buelvas, Puello,
G. Franco-Arnedo, D. Marsiglia-Lopez, Diagnostic of the
main agricultural residues produced in the Bolivar region, Sci.
Agroaliment., 2 (2015) 39–50.
- L.E. Rincón, J. Moncada, C.A. Cardona, Analysis of potential
technological schemes for the development of oil palm industry
in Colombia: a biorefinery point of view, Ind. Crops Prod.,
52 (2014) 457–465.
- L.E. Rincón, M.J. Valencia, V. Hernández, L.G. Matallana,
C.A. Cardona, Optimization of the Colombian biodiesel
supply chain from oil palm crop based on techno-economical
and environmental criteria, Energy Econ., 47 (2020) 154–167.
- Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun,
K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen,
X. Zhang, F. Gao, Y. Zhang, Utilizations of agricultural waste
as adsorbent for the removal of contaminants: a review,
Chemosphere, 211 (2018) 235–253.
- C. Tejada-Tovar, A. Gonzalez-Delgado, A. Villabona-Ortiz,
Characterization of residual biomasses and its application for
the removal of lead ions from aqueous solution, Appl. Sci.,
9 (2019) 1–14.
- J. Lara, C. Tejada-Tovar, A. Villabona-Ortíz, A. Arrieta,
Adsorption of lead and cadmium in continuous of fixed bed on
cocoa waste, Rev. Ion, 29 (2016) 113–124.
- Á. García-Padilla, K. Moreno-Sader, A. Realpe, M. Acevedo-Morantes, J.B.P. Soares, Evaluation of adsorption capacities of
nanocomposites prepared from bean starch and montmorillonite,
Sustainable Chem. Pharm., 17 (2020) 1–13, doi:10.1016/j.
scp.2020.100292.
- K. Moreno-Sader, A. García-Padilla, A. Realpe, M. Acevedo-Morantes, J. Soares, Removal of heavy metal water pollutants
(Co2+ and Ni2+) using polyacrylamide/sodium montmorillonite
(PAM/Na-MMT) nanocomposites, ACS Omega, 4 (2019)
10834–10844.
- S. Madala, S.K. Nadavala, S. Vudagandla, V.M. Boddu,
K. Abburi, Equilibrium, kinetics and thermodynamics of
cadmium(II) biosorption on to composite chitosan biosorbent,
Arabian J. Chem., 10 (2017) S1883–S1893.
- A. Natasia, J. Febrianto, J. Sunarso, Y. Ju, N. Indraswati,
S. Ismadji, Sequestering of Cu(II) from aqueous solution using
cassava peel (Manihot esculenta), J. Hazard. Mater., 180 (2010)
366–374.
- G. Huamán, L. Torem, Biosorción de Metales Pesados
Contenidos en Efluentes Utilizando Biomasa Orgánica,
Convención Minera Arequipa, 2009.
- C. Ardila, S. Carreño, Aprovechamiento de la Cáscara de la
Mazorca de Cacao Como Adsorbente, Universidad Industrial
de Santander, 2011.
- E. Soto, Estudio de la Remoción de Cu(II) en Medio Acuoso
Utilizando el Albedo de la Cáscara de Naranja, Universidad
Nacional de Ingenieria, 2009.
- P. Bartczak, M. Norman, Ł. Klapiszewski, N. Karwańska,
M. Kawalec, M. Baczyńska, M. Wysokowski, J. Zdarta,
F. Ciesielczyk, T. Jesionowski, Removal of nickel(II) and
lead(II) ions from aqueous solution using peat as a low-cost
adsorbent: a kinetic and equilibrium study, Arabian J. Chem.,
11 (2018) 1209–1222.
- Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Tabbaa,
Characteristics and mechanisms of nickel adsorption on
biochars produced from wheat straw pellets and rice husk,
Environ. Sci. Pollut. Res. Int., 24 (2017) 12809–12819.
- X. Zhang, X. Wang, Adsorption and desorption of Nickel(II)
ions from aqueous solution by a lignocellulose/montmorillonite
nanocomposite, PLos One, 10 (2015) 1–21, doi: 10.1371/journal.
pone.0117077.
- G. Kajjumba, S. Emik, A. Ongen, H. Ozcan, S. Aydin, Modelling of
Adsorption Kinetic Processes—Errors, Theory and Application,
S. Edebali, Ed., Advanced Sorption Process Applications,
IntechOpen, 2018. Available at: https://www.intechopen.com/
books/advanced-sorption-process-applications/modelling-ofadsorption-
kinetic-processes-errors-theory-and-application
- K. Kowanga, E. Gatebe, G. Mautin, E. Mauti, Kinetic, sorption
isotherms, pseudo-first-order model and pseudo-second-order
model studies of Cu(II) and Pb(II) using defatted Moringa
oleifera seed powder, J. Phytopharmacol., 5 (2016) 71–78.
- E. Da’Na, A. Awad, Regeneration of spent activated carbon
obtained from home filtration system and applying it for
heavy metals adsorption, J. Environ. Chem. Eng., 5 (2017)
3091–1099.
- D. Robati, Pseudo-second-order kinetic equations for modeling
adsorption systems for removal of lead ions using multiwalled
carbon nanotube, J. Nanostruct. Chem., 55 (2013) 1–6.