References

  1. T. Oki, S. Kanae, Global hydrological cycles and world water resources, Science, 313 (2006) 1068–1072.
  2. M. Arfanuzzaman, A.A. Rahman, Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building, Global Ecol. Conserv., 10(2017) 9–22.
  3. J. Howard-Grenville, S.J. Buckle, B.J. Hoskins, G. George, Climate change and management, Acad. Manage. J., 57 (2014) 615–623.
  4. R.N. Jones, Managing uncertainty in climate change projections– issues for impact assessment, Clim. Change, 45 (2000) 403–419.
  5. D. Lettenmaier, C. Leveque, M. Meybeck, C. Pahl-Wostl, J. Alcamo, P. Kabat, Humans transforming the global water system, Trans. Am. Geophys. Union, 85 (2004) 509–514.
  6. R. Zhang, H. Renssen, H. Seppä, P.J. Valdes, Holocene temperature trends in the extratropical northern hemisphere based on inter‐model comparisons, J. Quat. Sci., 33 (2018) 464–476.
  7. M.G. Donat, A.L. Lowry, L.V. Alexander, P.A. O’Gorman, N. Maher, More extreme precipitation in the world’s dry and wet regions, Nat. Clim. Change, 6 (2016) 508–513.
  8. J. Huang, M. Ji, Y. Xie, S. Wang, Y. He, J. Ran, Global semi-arid climate change over last 60 years, Clim. Dyn., 46 (2016) 1131–1150.
  9. K.E. Kunkel, D.A. Robinson, S. Champion, X. Yin, T. Estilow, R.M. Frankson, Trends and extremes in northern hemisphere snow characteristics, Curr. Clim. Change Rep., 2 (2016) 65–73.
  10. S. Kundu, D. Khare, A. Mondal, Individual and combined impacts of future climate and land use changes on the water balance, Ecol. Eng., 105 (2017) 42–57.
  11. Z. Yin, H. Xiao, S. Zou, R. Zhu, Z. Lu, Y. Lan, Y. Shen, Simulation of hydrological processes of mountainous watersheds in inland river basins: taking the Heihe Mainstream River as an example, J. Arid Land, 6 (2014) 16–26.
  12. A. Belayneh, J. Adamowski, B. Khalil, B. Ozga-Zielinski, Longterm SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models, J. Hydrol., 508 (2014) 418–429.
  13. Y. Zhang, C. Tan, S. Abbas, K. Eric, S. Xia, X. Zhang, Modified SPI improves the emulsion properties and oxidative stability of fish oil microcapsules, Food Hydrocolloids, 51 (2015) 108–117.
  14. A.K. Mishra, V.P. Singh, A review of drought concepts, J. Hydrol., 391 (2010) 202–216.
  15. M. Tan, K. Tan, V. Chua, N. Chan, Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia, Water, 9 (2017) 57–71.
  16. K.Y. Wang, Q.F. Li, Y. Yang, M. Zeng, P.C. Li, J.X. Zhang, Analysis of spatio-temporal evolution of droughts in Luanhe River Basin using different drought indices, Water Sci. Eng., 8 (2015) 282–290.
  17. T.B. McKee, N.J. Doesken, J. Kleist, The Relationship of Drought Frequency and Duration to Time Scales, the 8th Conference on Applied Climatology, Boston, MA, 1993.
  18. B. Bonaccorso, I. Bordi, A. Cancelliere, G. Rossi, A. Sutera, Spatial variability of drought: an analysis of the SPI in Sicily, Water Resour. Manage., 17 (2003) 273–296.
  19. M.J. Hayes, M.D. Svoboda, D.A. Wilhite, O.V. Vanyarkho, Monitoring the 1996 drought using the standardized precipitation index, Am. Meteorol. Soc., 80 (1999) 429–438.
  20. N.B. Guttman, Accepting the standardized precipitation index: a calculation algorithm, J. Am. Water Resour. Assoc., 35 (1999) 311–322.
  21. G. Tsakiris, H. Vangelis, Towards a drought watch system based on spatial SPI, Water Resour. Manage., 18 (2004) 1–12.
  22. F. Fiorillo, F.M. Guadagno, Karst spring discharges analysis in relation to drought periods, using the SPI, Water Resour. Manage., 24 (2010) 1867–1884.
  23. S.M. Quiring, T.N. Papakryiakou, An evaluation of agricultural drought indices for the Canadian prairies, Agric. For. Meteorol., 118 (2003) 49–62.
  24. M.G. Kendall, Rank Correlation Methods, Charles Griffin & Co., Ltd., London, 1948.
  25. H.B. Mann, Nonparametric tests against trend, Econometrica, 13 (1945) 245–259.
  26. G.V. Bayley, J.M. Hammersley, The “effective” number of independent observations in an autocorrelated time series, J. R. Stat. Soc., 8 (1946) 184–197.
  27. E.M. Douglas, R.M. Vogel, C.N. Kroll, Trends in floods and low flows in the United States: impact of spatial correlation, J. Hydrol., 240 (2000) 90–105.
  28. T. Partal, E. Kahya, Trend analysis in Turkish precipitation data, Hydrol. Processes, 20 (2006) 2011–2026.
  29. H. Tabari, S. Marofi, A. Aeini, P.H. Talaee, K. Mohammadi, Trend analysis of reference evapotranspiration in the western half of Iran, Agric. For. Meteorol., 151 (2011) 128–136.
  30. L. Hudgins, C.A. Friehe, M.E. Mayer, Wavelet transforms and atmospheric turbulence, Phys. Rev. Lett., 71 (1993) 3279–3282.
  31. A. Grinsted, J.C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes Geophys., 11 (2004) 561–566.
  32. C. Torrence, G.P. Compo, A practical guide to wavelet analysis, Am. Meteorol. Soc., 79 (1998) 61–78.
  33. S. Huang, B. Hou, J. Chang, Q. Huang, Y. Chen, Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain, China, J. Hydrol., 519 (2014) 3204–3213.
  34. K. Haslinger, D. Koffler, W. Schöner, G. Laaha, Exploring the link between meteorological drought and streamflow: effects of climate catchment interaction, Water Resour. Res., 50 (2014) 2468–2487.