References

  1. A. Ebrahimi, M.M. Amin, H. Pourzamani, Y. Hajizadeh, A.H. Mahvi, M. Mahdavi, M.H.R. Rad, Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment, Environ. Monit. Assess., 189 (2017) 1–15.
  2. M.M. Amin, B. Bina, E. Taheri, A. Fatehizadeh, M. Ghasemian, Stoichiometry evaluation of biohydrogen production from various carbohydrates, Environ. Sci. Pollut. Res., 23 (2016) 20915–20921.
  3. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Environ. Sci. Technol., 10 (2020) 1–40.
  4. Y. Du, M. Zhou, L. Lei, Role of the intermediates in the degradation of phenolic compounds by Fenton-like process, J. Hazard. Mater., 136 (2006) 859–865.
  5. M. Zare, M.M. Amin, M. Nikaeen, B. Bina, H. Pourzamani, A. Fatehizadeh, E. Taheri, Resazurin reduction assay, a useful tool for assessment of heavy metal toxicity in acidic conditions, Environ. Monit. Assess., 187 (2015), doi: 10.1007/ s10661-015-4392-y.
  6. W. Raza, J. Lee, N. Raza, Y. Luo, K.-H. Kim, J. Yang, Removal of phenolic compounds from industrial waste water based on membrane-based technologies, J. Ind. Eng. Chem., 71 (2019) 1–18.
  7. A. Akbari, M. Sadani, M.M. Amin, F. Teimouri, M. Khajeh, M. Mahdavi, M. Hadi, Managing sulfate ions produced by sulfate radical-advanced oxidation process using sulfatereducing bacteria for the subsequent biological treatment, J. Environ. Chem. Eng., 6 (2018) 5929–5937.
  8. U. Maheswari.M, N.S. Ebenezer, J. Priyakumari.C, An in silico approach: homology modelling and docking studies of rabies virus glycoprotein with Salviifoside A of Alangium salviifolium, Int. J. Sci. Res., 78 (2015) 531–534.
  9. H. Farrokhzadeh, E. Taheri, A. Ebrahimi, A. Fatehizadeh, M.V. Dastjerdi, B. Bina, Effectiveness of Moringa oleifera powder in removal of heavy metals from aqueous solutions, Fresenius Environ. Bull., 22 (2013) 1516–1523.
  10. R. Sridar, U.U. Ramanane, M. Rajasimman, ZnO nanoparticles – synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater, Environ. Nanotechnol. Monit. Manage., 10 (2018) 388–393.
  11. N.S. Alharbi, B. Hu, T. Hayat, S.O. Rabah, A. Alsaedi, L. Zhuang, X. Wang, Efficient elimination of environmental pollutants through sorption–reduction and photocatalytic degradation using nanomaterials, Front. Chem. Sci. Eng., 14 (2020) 1124–1135.
  12. J. Dosta, J. Nieto, J. Vila, M. Grifoll, J. Mata-Álvarez, Phenol removal from hypersaline wastewaters in a membrane biological reactor (MBR): operation and microbiological characterisation, Bioresour. Technol., 102 (2011) 4013–4020.
  13. E.B. Estrada-Arriaga, J.A. Zepeda-Aviles, L. García-Sánchez, Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step, Chem. Eng. J., 285 (2016) 508–516.
  14. S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol., 73 (2010) 71–91.
  15. M. Sun, G. Feng, M. Zhang, C. Song, P. Tao, T. Wang, M. Shao, Enhanced removal ability of phenol from aqueous solution using coal-based carbon membrane coupled with electrochemical oxidation process, Colloids Surf., A, 540 (2018) 186–193.
  16. M. Mahdavi, A. Ebrahimi, A.H. Mahvi, A. Fatehizadeh, F. Karakani, H. Azarpira, Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon, Data Brief, 17 (2018) 731–738.
  17. S. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm., 76 (2008) 714–720.
  18. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  19. S.S. Sable, K.J. Shah, P.-C. Chiang, S.-L. Lo, Catalytic oxidative degradation of phenol using iron oxide promoted sulfonated-ZrO2 by advanced oxidation processes (AOPs), J. Taiwan Inst. Chem. Eng., 91 (2018) 434–440.
  20. L. Mais, M. Mascia, S. Palmas, A. Vacca, Photoelectrochemical oxidation of phenol with nanostructured TiO2-PANI electrodes under solar light irradiation, Sep. Purif. Technol., 208 (2019) 153–159.
  21. S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobiol., C, 31 (2017) 1–35.
  22. P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications, Appl. Catal., B, 181 (2016) 103–117.
  23. W. Chu, D. Li, N. Gao, M.R. Templeton, C. Tan, Y. Gao, The control of emerging haloacetamide DBP precursors with UV/persulfate treatment, Water Res., 72 (2015) 340–348.
  24. H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process, Sep. Purif. Technol., 117 (2013) 18–23.
  25. Y.-C. Lee, S.-L. Lo, J. Kuo, C.-P. Huang, Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon, J. Hazard. Mater., 261 (2013) 463–469.
  26. Y. Ji, C. Dong, D. Kong, J. Lu, Q. Zhou, Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides, Chem. Eng. J., 263 (2015) 45–54.
  27. X. Wang, L. Wang, J. Li, J. Qiu, C. Cai, H. Zhang, Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation, Sep. Purif. Technol., 122 (2014) 41–46.
  28. X. Zhou, Q. Wang, G. Jiang, P. Liu, Z. Yuan, A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate, Bioresour. Technol., 185 (2015) 416–420.
  29. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  30. X. Guan, Y. Sun, H. Qin, J. Li, I.M. Lo, D. He, H. Dong, The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014), Water Res., 75 (2015) 224–248.
  31. X. Xie, Y. Zhang, W. Huang, S. Huang, Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation, J. Environ. Sci., 24 (2012) 821–826.
  32. J. Du, W. Guo, H. Wang, R. Yin, H. Zheng, X. Feng, D. Che, N. Ren, Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: kinetics, mechanisms, and pathways, Water Res., 138 (2018) 323–332.
  33. P. Xie, L. Zhang, J. Chen, J. Ding, Y. Wan, S. Wang, Z. Wang, A. Zhou, J. Ma, Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation, Water Res., 149 (2019) 169–178.
  34. E.W. Rice, R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 23rd ed., APHA, AWWA, WEF, 2017.
  35. L. Chen, X. Peng, J. Liu, J. Li, F. Wu, Decolorization of Orange II in aqueous solution by an Fe(II)/sulfite system: replacement of persulfate, Ind. Eng. Chem. Res., 51 (2012) 13632–13638.
  36. Y. Zhang, Q. Zhang, J. Hong, Sulfate radical degradation of acetaminophen by novel iron–copper bimetallic oxidation catalyzed by persulfate: mechanism and degradation pathways, Appl. Surf. Sci., 422 (2017) 443–451.
  37. P. Xie, Y. Guo, Y. Chen, Z. Wang, R. Shang, S. Wang, J. Ding, Y. Wan, W. Jiang, J. Ma, Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants, Chem. Eng. J., 314 (2017) 240–248.
  38. Y. Du, M. Dai, J. Cao, C. Peng, I. Ali, I. Naz, J. Li, Efficient removal of acid orange 7 using a porous adsorbent-supported zero-valent iron as a synergistic catalyst in advanced oxidation process, Chemosphere, 244 (2020)125522.
  39. S.-Y. Oh, S.-G. Kang, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron, Sci. Total Environ., 408 (2010) 3464–3468.
  40. T.S. Rad, A. Khataee, S. Rahim Pouran, Synergistic enhancement in photocatalytic performance of Ce(IV) and Cr(III) co-substituted magnetite nanoparticles loaded on reduced graphene oxide sheets, J. Colloid Interface Sci., 528 (2018) 248–262.
  41. A. Khataee, T.S. Rad, B. Vahid, S. Khorram, Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process, Ultrason. Sonochem., 33 (2016) 37–46.
  42. R.J. Wood, C. Vévert, J. Lee, M.J. Bussemaker, Flow effects on phenol degradation and sonoluminescence at different ultrasonic frequencies, Ultrason. Sonochem., 63 (2020)104892.
  43. P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M.R. Wiesner, J. Fang, Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals, Water Res., 69 (2015) 223–233.
  44. C. Minero, P. Pellizzari, V. Maurino, E. Pelizzetti, D. Vione, Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters, Appl. Catal., B, 77 (2008) 308–316.
  45. K.P. Jyothi, S. Yesodharan, E.P. Yesodharan, Influence of commonly occurring cations on the sono, photo and sonophoto catalytic decontamination of water, IOSR J. Appl. Chem., 2016 (2016) 15–24.
  46. Y. Jiang, Y. Luo, Z. Lu, P. Huo, W. Xing, M. He, J. Li, Y. Yan, Influence of inorganic ions and pH on the photodegradation of 1-methylimidazole-2-thiol with TiO2 photocatalyst based on magnetic multi-walled carbon nanotubes, Bull. Korean Chem. Soc., 35 (2014) 76–82.
  47. C. Liang, H.-W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  48. S. Hadi, E. Taheri, M.M. Amin, A. Fatehizadeh, T.M. Aminabhavi, Synergistic degradation of 4-chlorophenol by persulfate and oxalic acid mixture with heterogeneous Fenton like system for wastewater treatment: adaptive neurofuzzy inference systems modeling, J. Environ. Manage., 268 (2020) 110678
  49. X. Zou, T. Zhou, J. Mao, X. Wu, Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system, Chem. Eng. J., 257 (2014) 36–44.
  50. Q. Wang, S. Tian, P. Ning, Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene, Ind. Eng. Chem. Res., 53 (2014) 643–649.
  51. P. Jia, H. Tan, K. Liu, W. Gao, Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite, Mater. Res. Bull., 102 (2018) 45–50.
  52. P.K. Labhane, G.H. Sonawane, S.H. Sonawane, Influence of rare-earth metal on the zinc oxide nanostructures: application in the photocatalytic degradation of methylene blue and p-nitro phenol, Green Process. Synth., 7 (2018) 360–371.