References

  1. D.M. Krstić, W. Höflinger, A.K. Koris, G.N. Vatai, Energy-saving potential of cross-flow ultrafiltration with inserted static mixer: application to an oil-in-water emulsion, Sep. Purif. Technol., 57 (2007) 134–139.
  2. A. Srinivasan, T. Viraraghavan, Oil removal from water using biomaterials, Bioresour. Technol., 101 (2010) 6594–6600.
  3. F. Yalcinkaya, E. Boyraz, J. Maryska, K. Kucerova, A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials, 13 (2020) 493, doi: 10.3390/ma13020493.
  4. A. Pinotti, N. Zaritzky, Effect of aluminum sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes, Waste Manage., 21 (2001) 535–542.
  5. N. Chawaloesphonsiya, P. Guiraud, P. Painmanakul, Analysis of cutting-oil emulsion destabilization by aluminum sulfate, Environ. Technol., 39 (2018) 1450–1460.
  6. A. Cambiella, J.M. Benito, C. Pazos, J. Coca, Centrifugal separation efficiency in the treatment of waste emulsified oils, Chem. Eng. Res. Des., 84 (2006) 69–76.
  7. J.J. Schoeman, O. Novhe, Evaluation of microfiltration for the treatment of spent cutting-oil, Water SA, 33 (2007), 245–248
  8. A. Lobo, Á. Cambiella, J.M. Benito, C. Pazos, J. Coca, Ultrafiltration of oil-in-water emulsions with ceramic membranes: influence of pH and cross flow velocity, J. Membr. Sci., 278 (2006) 328–334.
  9. S. Popović, M. Karadžić, J. Cakl, Optimization of ultrafiltration of cutting oil wastewater enhanced by application of twisted tapes: response surface methodology approach, J. Cleaner Prod., 231 (2019) 320–330.
  10. C. Cheng, D. Phipps, R.M. Alkhaddar, Treatment of spent metalworking fluids, Water Res., 39 (2005) 4051–4063.
  11. M. Perez, R. Rodriguez-Cano, L.I. Romero, D. Sales, Anaerobic thermophilic digestion of cutting oil wastewater: effect of co-substrate, Biochem. Eng. J., 29 (2006) 250–257.
  12. M. Perez, R. Rodriguez-Cano, L.I. Romero, D. Sales, Performance of anaerobic thermophilic fluidized bed in the treatment of cutting-oil wastewater, Bioresour. Technol., 98 (2007) 3456–3463.
  13. N. Adhoum, L. Monser, N. Bellakhal, J.-E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation, J. Hazard. Mater., 112 (2004) 207–213.
  14. M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance, Chem. Eng. J., 260 (2015) 749–756.
  15. M.A. Tofighy, T. Mohammadi, Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent, Mater. Res. Bull., 68 (2015) 54–59.
  16. I. Linares-Hernández, C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, F. Ureña-Núñez, Influence of the anodic material on electrocoagulation performance, Chem. Eng. J., 148 (2009) 97–105.
  17. J. Vidal, L. Villegas, J.M. Peralta-Hernández, R.S. González, Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode, J. Environ. Sci. Health., Part A, 51 (2016) 289–296.
  18. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–14.
  19. A.R.A. Aziz, P. Asaithambi, W.M.A.B.W. Daud, Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent, Process Saf. Environ. Prot., 99 (2016) 227–235.
  20. P. García-García, F.N. Arroyo-López, F. Rodríguez-Gómez, Partial purification of iron solutions from ripe table olive processing using ozone and electro-coagulation, Sep. Purif. Technol., 133 (2014) 227–235.
  21. S. Song, Z. He, J. Qiu, L. Xu, J. Chen, Ozone assisted electrocoagulation for decolorization of C.I. Reactive Black 5 in aqueous solution: an investigation of the effect of operational parameters, Sep. Purif. Technol., 55 (2007) 238–245.
  22. C. Durante, M. Cuscov, A.A. Isse, G. Sandonà, A. Gennaro, Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA, Water Res., 45 (2011) 2122–2130.
  23. D. Kumarasinghe, L. Pettigrew, L.D. Nghiem, Removal of heavy metals from mining impacted water by an electrocoagulationultrafiltration hybrid process, Desal. Water Treat., 11 (2009) 66–72.
  24. T.C. Timmes, H.-C. Kim, B.A. Dempsey, Elecrocoagulation pretreatment of seawater prior to ultrafiltration: pilotscale applications for military water purification systems, Desalination, 250 (2010) 6–13.
  25. N.P. Gamage, S. Chellam, Aluminum electrocoagulation pretreatment reduces fouling during surface water microfiltration, J. Membr. Sci., 379 (2011) 97–105.
  26. S. Chellam, M.A. Sari, Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: a review of fouling, NOM, DBP, and virus control, J. Hazard. Mater., 304 (2016) 490–501.
  27. I. Yahiaoui, F. Aissani-Benissad, F. Fourcade, A. Amrane, Combination of an electrochemical pretreatment with a biological oxidation for the mineralization of nonbiodegradable organic dyes: Basic yellow 28 dye, Environ. Prog. Sustainable Energy, 33 (2014) 160–169.
  28. K. Yetilmezsoy, F. Ilhan, Z. Sapci-Zengin, S. Sakar, M.T. Gonullu, Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a posttreatment study, J. Hazard. Mater., 162 (2009) 120–132.
  29. A. Dermouchi, T. Lendormi, S. Arris, J.L. Lanoiselle, M. Bencheikh-Lehocine, Cutting oil emulsion anaerobic biodegradation: electrocoagulation pretreatment effect, Chem. Eng. Trans., 64 (2018) 565–570.
  30. G. Gutiérrez, A. Lobo, J.M. Benito, J. Coca, C. Pazos, Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation, J. Hazard. Mater., 185 (2011) 1569–1574.
  31. J.K. Milić, E. Dražević, K. Košutić, M. Simonič, Microfiltration of cutting-oil emulsions enhanced by electrocoagulation, Desal. Water Treat., 57 (2016) 10959–10968.
  32. J.-M. Fontmorin, J. Siguié, F. Fourcade, F. Geneste, D. Floner, I. Soutrel, A. Amrane, Combined electrochemical treatment/ biological process for the removal of a commercial herbicide solution, U46D®, Sep. Purif. Technol., 132 (2014) 704–711.
  33. I. Yahiaoui, F. Aissani-Benissad, K. Madi, N. Benmehdi, F. Fourcade, A. Amrane, Electrochemical pre-treatment combined with biological treatment for the degradation of methylene blue dye: Pb/PbO2 electrode and modelingoptimization through central composite design, Ind. Eng. Chem. Res., 52 (2013) 14743–14751.
  34. I. Yahiaoui, L.Y. Cherif, K. Madi, F. Aissani-Benissad, F. Fourcade, A. Amrane, The feasibility of combining an electrochemical treatment on a carbon felt electrode and a biological treatment for the degradation of tetracycline and tylosin – application of the experimental design methodology, Sep. Sci. Technol., 53 (2018) 337–348.
  35. K. Madi, I. Yahiaoui, F. Aissani-Benissad, C. Vial, F. Audonnet, L. Favier, Basic red dye removal by coupling electrocoagulation process with biological treatment, Environ. Eng. Manage. J., 18 (2019) 563–573.
  36. M. Khemis, G. Tanguy, J.P. Leclerc, G. Valentin, F. Lapicque, Electrocoagulation for the treatment of oil suspensions: relation between the rates of electrode reactions and the efficiency of waste removal, Process Saf. Environ. Prot., 83 (2005) 50–57.
  37. I.-H. Cho, K.-D. Zoh, Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes Pigm., 75 (2007) 533–543.
  38. S. Mathieu, P. Etienne, Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various SO/XO ratios, Water Res., 34 (2000) 1233–1246.
  39. M.K. Bouchareb, M. Bouhelassa, M. Berkani, Optimization of photocatalytic decolorization of C.I. Basic Blue 41 in semipilot scale prototype solar photoreactor, J. Chem. Technol. Biotechnol., 89 (2014) 1211–1218.
  40. M. Kobya, E. Demirbas, M. Bayramoglu, M.T. Sensoy, Optimization of electrocoagulation process for the treatment of metal cutting wastewaters with response surface methodology, Water Air Soil Pollut., 215 (2010) 399–410.
  41. P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf., A, 211 (2002) 233–248.
  42. G.A. Ekama, P.L. Dold, G.v.R. Marais, Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems, Water Sci. Technol., 18 (1986) 91–114.
  43. M. Henze, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London, 2005.
  44. K. Dircks, P.F. Pind, H. Mosbæk, M. Henze, Yield determination by respirometry - the possible influence of storage under aerobic conditions in activated sludge, Water SA, 25 (1999) 69–74.
  45. O. Karahan-Gül, N. Artan, D. Orhon, M. Henze, M.C.M. van Loosdrecht, Respirometric assessment of storage yield for different substrates, Water Sci. Technol., 46 (2002) 345–352.
  46. W. Gujer, M. Henze, T. Mino, M. van Loosdrecht, Activated sludge model no. 3, Water Sci. Technol., 39 (1999) 183–193.
  47. A. Ordaz, C.S. Oliveira, G. Quijano, E.C. Ferreira, M. Alves, F. Thalasso, Kinetic and stoichiometric characterization of a fixed biofilm reactor by pulse respirometry, J. Biotechnol., 157 (2012) 173–179.
  48. A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Electro-coagulation of reactive textile dyes and textile wastewater, Chem. Eng. Process. Process Intensif., 44 (2005) 461–470.
  49. Metcalf & Eddy, Inc., Wastewater Engineering: Treatment and Reuse, McGraw-Hill, Boston, MA, 2003.