References

  1. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liq., 269 (2018) 855–868.
  2. J. Goscianska, M. Marciniak, R. Pietrzak, Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption, Chem. Eng. J., 247 (2014) 258–264.
  3. J. Choma, M. Czubaszek, M. Jaroniec, Adsorption of dyes from aqueous solutions on active carbons, Ochr. Sr., 37 (2015) 3–14 (in Polish).
  4. S. Hosseini, M.A. Khan, M.R. Malekbala, W. Cheah, T.S.Y. Choong, Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies, Chem. Eng. J., 171 (2011) 1124–1131.
  5. K. Lu, T. Wang, L. Zhai, W. Wu, S. Dong, S. Gao, L. Mao, Adsorption behavior and mechanism of Fe–Mn binary oxide nanoparticles: adsorption of methylene blue, J. Colloid Interface Sci., 539 (2019) 553–562.
  6. J. Mittal, Permissible synthetic food dyes in India, Resonance, 25 (2020) 567–577.
  7. A. Mittal, J. Mittal, Chapter 11: Hen Feather: A Remarkable Adsorbent for Dye Removal, S.K. Sharma, Ed., Green Chemistry for Dyes Removal from Wastewater, Scrivener Publishing LLC, USA, 2015, pp. 409–457.
  8. M.J.R.G.R. Pires, M.I.A. Ferra, A.M.M. Marques, Ionization of methyl orange in aqueous sodium chloride solutions, J. Chem. Thermodyn., 51 (2012) 93–99.
  9. I.S. Yahia, M.S. Abd El-Sadek, F. Yakuphanoglu, Methyl orange (C.I. acid orange 52) as a new organic semiconductor: conduction mechanism and dielectrical relaxation, Dyes Pigm., 93 (2012) 1434–1440.
  10. A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials, J. Hazard. Mater., 150 (2008) 364–375.
  11. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Removal of methylene blue by mesoporous CMK-3: kinetics, isotherms and thermodynamics, J. Mol. Liq., 223 (2016) 763–770.
  12. S.K. Theydan, M.J. Ahmed, Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies, J. Anal. Appl. Pyrolysis, 97 (2012) 116–122.
  13. F.M. Maingi, H.M. Mbuvi, M.M. Ng’ang’a, H. Mwangi, Adsorption kinetics and isotherms of methylene blue by geopolymers derived from common clay and rice husk ash, Phys. Chem., 7 (2017) 87–97.
  14. H. Daraei, A. Mittal, Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater, Desal. Water Treat., 90 (2017) 294–298.
  15. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020) 113642–113653.
  16. A. Bellifa, M. Makhlouf, Z.H. Boumila, Comparative study of the adsorption of methyl orange by bentonite and activated carbon, Acta Phys. Pol. A, 132 (2017) 466–468.
  17. V.K. Gupta, S. Agarwal, R. Ahmad, A. Mirza, J. Mittal, Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite, Int. J. Biol. Macromol., 158 (2020) 1310–1318.
  18. F. Liu, Z. Guo, H. Ling, Z. Huang, D. Tang, Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons, Microporous Mesoporous Mater., 227 (2016) 104–111.
  19. A. Chen, Y. Li, Y. Yu, Y. Li, K. Xia, Y. Wang, S. Li, Synthesis of mesoporous carbon nanospheres for highly efficient adsorption of bulky dye molecules, J. Mater. Sci., 51 (2016) 7016–7028.
  20. A. Mittal, V. Thakur, V. Gajbe, Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in aqueous solutions, Environ. Sci. Pollut. Res., 19 (2012) 2438–2447.
  21. J. Mittal, V. Thakur, A. Mittal, Batch removal of hazardous azo dye Bismark Brown R using waste material hen feather, Ecol. Eng., 60 (2013) 249–253.
  22. A. Mittal, R. Jain, J. Mittal, M. Shrivastava, Adsorptive removal of hazardous dye quinoline yellow from waste water using coconut-husk as potential adsorbent, Fresenius Environ. Bull., 19 (2010) 1–9.
  23. M. Czubaszek, J. Choma, Adsorption of dyes from aqueous solutions on nanoporous carbon materials obtained from polymeric precursors, Ochr. Sr., 39 (2017) 3–10 (in Polish).
  24. M. Czubaszek, J. Choma, Kinetic studies of selected dye adsorption from aqueous solutions on nanoporous carbons obtained from polymeric precursors, Ochr. Sr., 38 (2016) 3–12 (in Polish).
  25. E. Ghasemian, Z. Palizban, Comparisons of azo dye adsorption onto activated carbon and silicon carbide nanoparticles loaded on activated carbon, Int. J. Environ. Sci. Technol., 13 (2016) 501–512.
  26. S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149–156.
  27. L. Yu, Y. Luo, The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon, J. Environ. Chem. Eng., 2 (2014) 220–229.
  28. D. Zhao, W. Zhang, C. Chen, X. Wang, Adsorption of methyl orange dye onto multiwalled carbon nanotubes, Procedia Environ. Sci., 18 (2013) 890–895.
  29. S. Kundu, I.H. Chowdhury, M.K. Naskar, Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye, J. Mol. Liq., 234 (2017) 417–423.
  30. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  31. A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surf. Interfaces, 16 (2019) 76–84.
  32. C. Chen, S. Mi, D. Lao, P. Shi, Z. Tong, Z. Li, H. Hu, Single-step synthesis of eucalyptus sawdust magnetic activated carbon and its adsorption behavior for methylene blue, RSC Adv., 9 (2019) 22248–22262.
  33. I.A. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  34. M.U. Dural, L. Cavas, S.K. Papageorgiou, F.K. Katsaros, Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetic and equilibrium studies, Chem. Eng. J., 168 (2011) 77–85.
  35. D. Kavitha, C. Namasivayam, Experimental and kinetics studies on methylene blue adsorption by coir path carbon, Bioresour. Technol., 98 (2007) 14–21.
  36. M. Zubair, N.D. Mu’azu, N. Jarrah, N.I. Blaisi, H.A. Aziz, M.A. Al-Harthi, Adsorption behavior and mechanism of methylene blue, crystal violet, Eriochrome Black T, and Methyl Orange dyes onto biochar-derived date palm fronds waste produced at different pyrolysis conditions, Water Air Soil Pollut., 231 (2020) 240–259.
  37. N. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study, Dyes Pigm., 51 (2001) 25–40.
  38. Z. Jia, Z. Li, S. Li, Y. Li, R. Zhu, Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly(vinyl alcohol) microspheres, J. Mol. Liq., 220 (2016) 56–62.
  39. Y. Kuang, X. Zhang, S. Zhou, Adsorption of methylene blue in water onto activated carbon by surfactant modification, Water, 12 (2020) 587–605.
  40. E.N.E. Qada, S.J. Allen, G.M. Walker, Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm, Chem. Eng. J., 124 (2006) 103–110.
  41. F.C. Wu, R.L. Tseng, C.C. Hu, Comparisons of pore properties and adsorption performance of KOH-activated and steamactivated carbons, Microporous Mesoporous Mater., 80 (2005) 95–106.
  42. P. Hadi, K.Y. Yeung, J. Barford, K.J. An, G. McKay, Significance of “effective” surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules, J. Environ. Chem. Eng., 3 (2015) 1029–1037.
  43. P. Wang, M. Cao, C. Wang, Y. Ao, J. Hou, J. Qian, Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite, Appl. Surf. Sci., 290 (2014) 116–124.
  44. L. Liu, S. Fan, Y. Li, Removal behavior of methylene blue from aqueous solution by tea waste: kinetics, isotherms and mechanism, Int. J. Environ. Res. Public Health, 15 (2018) 1321–1336.
  45. V.-P. Dinh, T.-D.-T. Huynh, H.M. Le, V.-D. Nguyen, V.-A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, L.V. Tan, Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel, RSC Adv., 9 (2019) 25847–25860.
  46. R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite, Chem. Eng. J., 145 (2009) 496–504.
  47. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste, J. Mol. Liq., 284 (2019) 343–352.
  48. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–462.
  49. A. Derylo-Marczewska, A.W. Marczewski, S. Winter, D. Sternik, Studies of adsorption equilibria and kinetics in the system: aqueous solution of dye-mesoporous carbons, Appl. Surf. Sci., 256 (2010) 5164–5170.
  50. S. Asuha, X.G. Zhou, S. Zhao, Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method, J. Hazard. Mater., 181 (2010) 204–210.
  51. N. Liu, L. Yin, L. Zhang, C. Wang, N. Lun, Y. Qi, C. Wang, Ferromagnetic Ni decorated ordered mesoporous carbons as magnetically separable adsorbents for methyl orange, Mater. Chem. Phys., 131 (2011) 52–59.
  52. T.M. Albayati, G.M. Alwan, O.S. Mahdy, High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipient wetness impregnation method, Korean J. Chem. Eng., 34 (2017) 259–265.
  53. H. Li, N. An, G. Liu, J. Li, N. Liu, M. Jia, W. Zhang, X. Yuan, Adsorption behaviors of methyl orange dye on nitrogendoped mesoporous carbon materials, J. Colloid Interface Sci., 466 (2016) 343–351.
  54. W. Cheah, S. Hosseini, M.A. Khan, T.G. Ghuah, T.S.Y. Choong, Acid modified carbon coated monolith for methyl orange adsorption, Chem. Eng. J., 215–216 (2013) 747–754.
  55. X. Li, H. Yuan, X. Quan, S. Chen, S. You, Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks, J. Environ. Sci., 63 (2018) 250–259.
  56. T.A. Saleh, A.A. Al-Saadi, V.K. Gupta, Carbonaceous adsorbent prepared from waste tires: experimental and computational evaluations of organic dye methyl orange, J. Mol. Liq., 191 (2014) 85–91.
  57. K. Jedynak, M. Repelewicz, K. Kurdziel, D. Wideł, Removal of orange II from aqueous solutions using micro-mesoporous carbon materials: kinetic and equilibrium studies, Desal. Water Treat., 190 (2020) 294–311.
  58. X. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermal stability by selfassembly of resorcinol−formaldehyde and block copolymers under highly acidic conditions, Langmuir, 24 (2008) 7500–7505.
  59. J. Choma, A. Kalinowska, K. Jedynak, M. Jaroniec, Reproducibility of the synthesis and adsorption properties of ordered mesoporous carbons obtained by the soft-templating method, Ochr. Sr., 34 (2012) 1–8 (in Polish).
  60. N.P. Wickramaratne, M. Jaroniec, Activated carbon spheres for CO2 adsorption, ACS Appl. Mater. Interfaces, 5 (2013) 1849–1855.
  61. Y. Zhou, L. Sun, H. Wang, W. Liang, J. Yang, L. Wang, S. Shuang, Investigation on the uptake and release ability of b-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue, Mater. Chem. Phys., 170 (2016) 83–89.
  62. K. Kurdziel, M. Raczyńska-Żak, L. Dąbek, Equilibrium and kinetic studies on the process of removing chromium(VI) from solutions using HDTMA-modified halloysite, Desal. Water Treat., 137 (2019) 88–100.
  63. F. Marrakchi, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue, Int. J. Biol. Macromol., 98 (2017) 233–239.
  64. C.K. Lim, H.H. Bay, C.H. Noeh, A. Aris, Z.A. Majid, Z. Ibrahim, Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies, Environ. Sci. Pollut. Res., 20 (2013) 7243–7255.
  65. Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77 (2008) 16–23.
  66. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungl. Sven. Veten. Akad. Handl, 24 (1898) 1–39.
  67. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  68. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon solution, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
  69. X. Li, G. Wang, W. Li, P. Wang, C. Su, Adsorption of acid and basic dyes by sludge-based activated carbon: isotherm and kinetic studies, J. Cent. South Univ., 22 (2015) 103–113.
  70. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  71. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  72. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947) 331–337.
  73. M.M. Dubinin, The potential theory of adsorption of gasses and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–266.
  74. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination, 265 (2011) 159–168.