References

  1. A. Sharma, Z. Syed, U. Brighu, A.B. Gupta, C. Ram, Adsorption of textile wastewater on alkali-activated sand, J. Cleaner Prod., 220 (2019) 23–32.
  2. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, Bacterial decolorization and degradation of azo dyes: a review, J. Taiwan Inst. Chem. Eng., 42 (2011) 138–157.
  3. X. Huang, B. Lia, S. Wang, X. Yue, Y. Zhengguo, X. Deng, J. Maa, Facile in-situ synthesis of PEI-Pt modified bacterial cellulose bio-adsorbent and its distinctly selective adsorption of anionic dyes, Colloids Surf., A, 586 (2019), doi: 10.1016/j. colsurfa.2019.124163.
  4. P.V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  5. S. Noreen, H.N. Bhatti, M. Iqbal, F. Hussain, F.M. Sarim, Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye, Int. J. Biol. Macromol., 147 (2020) 439–452.
  6. Metcalf and Eddy, Inc., Wastewater Engineering: Treatment Disposal Reuse, Mcgraw-Hill, Singapore, 2004.
  7. F. Yang, H. Sadam, Y. Zhang, J. Xia, X. Yang, J. Long, S. Li, L. Shao, A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal, Chem. Eng. Sci., 225 (2020), doi: 10.1016/j.ces.2020.115845.
  8. B. Kasher, Membrane-based water treatment technologies: recent achievements, and new challenges for a chemist, Bull. Israel Chem. Soc., 24 (2009) 10–18.
  9. M.E. Walsh, G.A. Gagnon, Evaluating Membrane Processes for Drinking Water Treatment Design, Association of Environmental Engineering & Science Professors, 2006.
  10. X.-L. Cao, Y.-N. Yan, F.-Y. Zhou, S.-P. Sun, Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater, J. Membr. Sci., 595 (2020), doi: 10.1016/j.memsci.2019.117476.
  11. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356 (2015) 226–254.
  12. Y. Li, E. Wong, Z. Mai, B. Van der Bruggen, Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination, J. Membr. Sci., 592 (2019), doi: 10.1016/j.memsci.2019.117396.
  13. M.J.T. Raaijmakers, N.E. Benes, Current trends in interfacial polymerization chemistry, Prog. Polym. Sci., 63 (2016) 86–142.
  14. M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: a review, Polymer, 103 (2016) 417–456.
  15. L. Hilliou, F.D.S. Larotonda, P. Abreu, A.M. Ramos, A.M. Sereno, M.P. Goncalves, Effect of extraction parameters on the chemical structure and gel properties of κ/i-hybrid carrageenans obtained from Mastocarpus stellatus, Biomol. Eng., 23 (2006) 201–208.
  16. M.-C. Popescu, B.l. Dogaru, D. Sun, E. Stoleru, B.C. Simionescu, Structural and sorption properties of bio-nanocomposite films based on κ-carrageenan and cellulose nanocrystals, Int. J. Biol. Macromol., 135 (2019) 462–471.
  17. L.R. Rane, N.R. Savadekar, P.G. Kadam, S.T. Mhaske, Preparation and characterization of κ-Carrageenan/nanosilica biocomposite film, J. Mater., 2014 (2014) 1–8.
  18. J. Alam, A. Kumar Shukla, A. Aldalbahi, κ-Carrageenan as a promising pore-former for the preparation of a highly porous polyphenylsulfone membrane, Mater. Lett., 204 (2017) 108–111.
  19. C. Liu, Y. Sun, Z. Chen, S. Zhang, From ultrafiltration to nanofiltration: nanofiltration membrane fabricated by a combined process of chemical crosslinking and thermal annealing, Sep. Purif. Technol., 212 (2019) 465–473.
  20. M. Krok, E. Pamula, Poly(L-lactide-co-glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as a pore former, J. Appl. Polym. Sci., 125 (2012) 187–199.
  21. X.-Z. Wei, Z.-Q. Gan, Y.-J. Shen, Z.-L. Qiu, L.-F. Fang, B.-K. Zhu, Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance, J. Colloid Interface Sci., 553 (2019) 475–483.
  22. B. Stuart, Infrared Spectroscopy, Wiley Online Library, 2Hoboken, New Jersey, United States, 2005.
  23. D.L. Pavia, G.M. Lampman, G.S. Kriz, J.A. Vyvyan, Introduction to Spectroscopy, Harcourt College Publishers, San Diego, CA, 2001.
  24. M. Amoli-Diva, E. Irani, K. Pourghazi, Photocatalytic filtration reactors equipped with bi-plasmonic nanocomposite/poly acrylic acid-modified polyamide membranes for industrial wastewater treatment, Sep. Purif. Technol., 236 (2019), doi: 10.1016/j.seppur.2019.116257.
  25. Y.-H. Tak, K.-B. Kim, H.-G. Park, K.-H. Lee, J.-R. Lee, Criteria for ITO (indium-tin oxide) thin film as the bottom electrode of an organic light emitting diode, Thin Solid Films, 411 (2002) 12–16.
  26. C. Li, Y. Huang, X. Feng, Z. Zhang, P. Liu, High electrochemical performance poly(ethylene oxide)/2,4-toluene diisocyante/ polyethylene glycol as electrolytes for all-solid-state lithium batteries, J. Membr. Sci., 587 (2019), doi: 10.1016/j.memsci. 2019.117179.
  27. M.Y. Jeon, S.H. Yoo, C.K. Kim, Performance of negatively charged nanofiltration membranes prepared from mixtures of various dimethacrylates and methacrylic acid, J. Membr. Sci., 313 (2008) 242–249.
  28. S. Liu, Z.-X. Low, H.M. Hegab, Z. Xie, R. Ou, G. Yang, G.P. Simon, X. Zhang, L. Zhang, H. Wang, Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers, J. Membr. Sci., 592 (2019), doi: 10.1016/j. memsci.2019.117363.
  29. Z. Lü. F. Hu, H. Li, X. Zhang, S. Yu, M. Liu, C. Gao, Composite nanofiltration membrane with asymmetric selective separation layer for enhanced separation efficiency to anionic dye aqueous solution, J. Hazard. Mater., 368 (2019) 436–443.
  30. N. Misdan, A.F. Ismail, N. Hilal, Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination, Desalination, 380 (2016) 105–111.
  31. Y. Zhang, X. Cheng, X. Jiang, J.J. Urban, C.H. Lau, S. Liu, L. Shao, Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations, Mater. Today, 36 (2020) 40–47.