References

  1. S.M. Alsadaie, I.M. Mujtaba, Dynamic modelling of heat exchanger fouling in multistage flash (MSF) desalination, Desalination, 409 (2017) 47–65.
  2. T.M. Pääkkönen, M. Riihimäki, C.J. Simonson, Crystallization fouling of CaCO3–analysis of experimental thermal resistance and its uncertainty, Int. J. Heat Mass Transfer, 55 (2012) 6927–6937.
  3. S.M. Peyghambarzadeh, N. Bahrami, Statistical analysis of calcium sulfate scaling under boiling heat transfer, Appl. Therm. Eng., 53 (2013) 108–113.
  4. H. Xu, H.S. Li, D. Wang, Study on CaSO4 crystallization process and its influential factors, Ind. Water Treat., 31 (2011) 67–69.
  5. A.E. Al-Rawajfeh, Modeling of alkaline scale formation in falling film horizontal-tube multiple-effect distillers, Desalination, 205 (2007) 124–139.
  6. S.Y. Liu, Experimental Research of Seawater Fouling Process on Falling-Film Evaporation Outside Horizontal Tube, Dalian University of Technology, 2014.
  7. S.N. Kazi, G.G. Duffy, X.D. Chen, Fouling and fouling mitigation on heated metal surfaces, Desalination, 288 (2012) 126–134.
  8. H.U. Zettler, M. Wei, Q. Zhao, Influence of surface properties and characteristics on fouling in plate heat exchangers, Heat Transfer Eng., 26 (2005) 3–17.
  9. A. Stärk, K. Krömer, H. Glade, Impact of tube surface properties on crystallization fouling in falling film evaporators for seawater desalination, Heat Transfer Eng., 38 (2017) 207–217.
  10. C. Wildebrand, H. Glade, S. Will, Effects of process parameters and anti-scalants on scale formation in horizontal tube falling film evaporators, Desalination, 204 (2007) 448–463.
  11. K. Krömer, S. Will, K. Loisel, Scale formation and mitigation of mixed salts in horizontal tube falling film evaporators for seawater desalination, Heat Transfer Eng., 36 (2014) 750–762.
  12. A. Stärk, K. Loisel, K. Odiot, Wetting behaviour of different tube materials and its influence on scale formation in multipleeffect distillers, Desal. Water Treat., 55 (2015) 2502–2514.
  13. Z.X. Chen, L.P. Zhang, H. Ma, Effect of Na+ for the in-suit growth of magnesium hydroxide crystals on the cellulose membrane and their applications, J. Donghua Univ., 39 (2013) 322–326.
  14. F. Al-Hazmi, A. Umar, G.N. Dar, Microwave assisted rapid growth of Mg(OH)2 nanosheet networks for ethanol chemical sensor application, J. Alloys Compd., 519 (2012) 4–8.
  15. X. Song, S. Sun, D. Zhang, Synthesis and characterization of magnesium hydroxide by batch reaction crystallization, Front. Chem. Sci. Eng., 5 (2011) 416–421.
  16. D. Yi, G. Zhang, W. Hao, Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis, Chem. Mater., 13 (2001) 435–440.
  17. W. Zhen, J.H. Davidson, L.F. Francis, Effect of water chemistry on calcium carbonate deposition on metal and polymer surfaces, J. Colloid Interface Sci., 343 (2010) 176–187.
  18. Z.F. Liu, M.F. Yan, L.H. Zhang, Study on the effect of magnesium ion on the crystal of calcium carbonate, Technol. Water Treat., 37 (2011) 60–62.
  19. Z.Y. Zhang, R.A. Dawe, Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology, Chem. Geol., 163 (2000) 129–138.
  20. C.F. Yang, D.Q. Xu, Z.Q. Shen, The effect of surface material and Mg2+ on the scaling of CaCO3, J. Chem. Eng. Chin. Univ., 8 (1994) 313–317.
  21. B. Ni, S.Q. Shen, X.H. Liu, S. Chen, Effects of temperature and salinity on fouling in hypersaline seawater, Desal. Water Treat., 173 (2020) 41–48.
  22. J.Z. Chen, Modern Crystal Chemistry, Science Press, Beijing, 2010, pp. 65–93.
  23. Y. Takita, M. Eto, H. Sugihara, Promotion mechanism of co-existing NaCl in the synthesis of CaCO3 Mater. Lett., 61 (2007) 3083–3085.