References

  1. B.D. Lutz, A.N. Lewis, M.W. Doyle, Generation, transport, and disposal of wastewater associated with Marcellus Shale gas development, Water Resour. Res., 49 (2013) 647–656.
  2. R.B. Jackson, A. Vengosh, J.W. Carey, R.J. Davies, T.H. Darrah, F. O’Sullivan, P. Gabrielle, The environmental costs and benefits of fracking, Annu. Rev. Environ. Resour., 39 (2014) 327–362.
  3. J.M. Estrada, R. Bhamidimarri, A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing, Fuel, 182 (2016) 292–303.
  4. A.J. Kondash, N.E. Lauer, A. Vengosh, The intensification of the water footprint of hydraulic fracturing, Sci. Adv., 4 (2018) eaar5982, doi: 10.1126/sciadv.aar5982.
  5. O. Olsson, D. Weichgrebe, K.-H. Rosenwinkel, Hydraulic fracturing wastewater in Germany: composition, treatment, concerns, Environ. Earth Sci., 70 (2013) 3895–3906.
  6. D.L. Shaffer, L.H. Arias Chavez, M. Ben-Sasson, S. Romero-Vargas Castrillón, N.Y. Yip, M. Elimelech, Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions, Environ. Sci. Technol., 47 (2013) 9569–9583.
  7. D.S. Alessi, A. Zolfaghari, S. Kletke, J. Gehman, D.M. Allen, G.G. Goss, Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale development: water sourcing, treatment and disposal practices, Can. Water Resour. J., 42 (2017) 105–121.
  8. US Energy Information Administration, Annual Energy Outlook, Washington, D.C., 2017.
  9. G.A. Gagnon, W. Krkosek, L. Anderson, E. McBean, M. Mohseni, M. Bazri, I. Mauro, Impacts of hydraulic fracturing on water quality, a review of literature, regulatory frameworks and an analysis of information gaps, Environ. Rev., 24 (2015) 122–131.
  10. T.L.S. Silva, S. Morales-Torres, S. Castro-Silva, J.L. Figueiredo, A.M.T. Silva, An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water, J. Environ. Manage., 200 (2017) 511–529.
  11. A. Kondash, A. Vengosh, Water footprint of hydraulic fracturing, Environ. Sci. Technol. Lett., 2 (2015) 276–280.
  12. C. Notte, D.M. Allen, J. Gehman, D.S. Alessi, G.G. Goss, Comparative analysis of hydraulic fracturing wastewater practices in unconventional shale developments: regulatory regimes, Can. Water Resour. J., 42 (2017) 122–137.
  13. The Distribution of U.S. Oil and Natural Gas Wells by Production Rate, Washington, D.C., 2019.
  14. J.E. Johnston, E. Werder, D. Sebastian, Wastewater disposal wells, fracking, and environmental injustice in Southern Texas, Am. J. Public Health, 106 (2016) 1–7.
  15. M.P.J.A. Annevelink, J.A.J. Meesters, A. Hendricks, Environmental contaminantion due to shale gas development, Sci. Total Environ., 48 (2016) 431–438.
  16. I. Ferrer, E.M. Thurman, Chemical constituents and analytical approaches for hydraulic fracturing waters, Trends Environ. Anal. Chem., 5 (2015) 18–25.
  17. Y. Sun, D. Wang, D. Tsang, L. Wang, Y.S. Ok, Y. Feng, A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction, Environ. Int., 125 (2019) 452–469.
  18. FracFocus – National Hydraulic Fracturing Chemical Disclosure Registry, Ground Water Protection Council, Oklahoma City, OK, 2019. Available at: https://www.fracfocus.org/
  19. W.T. Stringfellow, M. Kay, J.K. Domen, W.L. Sandelin, C. Varadharajan, P.D. Jordan, M.T. Reagan, H. Cooley, M.G. Heberger, J.T. Birkholzer, Identifying chemicals of concern in hydraulic fracturing fluids used for oil production, Environ. Pollut., 220 (2017) 413–420.
  20. G.A. Kahrilas, J. Blotevogel, E.R. Corrin, T. Borch, Downhole transformation of the hydraulic fracturing fluid biocide glutaraldehyde: implications for flowback and produced water quality, Environ. Sci. Technol., 50 (2016) 11414–11423.
  21. J.J. Marrugo-Hernandez, R. Prinsloo, J. Fischer, R.A. Marriott, Downhole chemical degradation of corrosion inhibitors commonly used in shale gas fracturing and stimulation, Environ. Sci. Technol., 50 (2016) 11414–11423.
  22. F.-R. Ahmadun, A. Pendashteh, L. Chuah Abdullah, D. Radiah Awang Biak, S. Siavash Madaeni, Z. Zainal Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170 (2009) 530–551.
  23. L.G. Faksness, P.G. Grini, P.S. Daling, Partitioning of semisoluble organic compounds between the water phase and oil droplets in produced water, Mar. Pollut. Bull., 48 (2004) 731–742.
  24. EPA, Comparison of Hydraulic Fracturing Fluids Composition with Produced Formation Water Following Fracturing - Implications for Fate and Transport, Hydraulic Fracturing Technical Workshop 3 - Contaminant Identification, Transformation & Transport, Environmental Protection Agency, United States, 2016.
  25. K.B. Gregory, R.D. Vidic, D.A. Dzombak, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements, 7 (2011) 181–186.
  26. J. Broderick, K. Anderson, R. Wood, P. Gilbert, M. Sharmina, A. Footitt, S. Glynn, F. Nicholls, Shale Gas: An Updated Assessment of Environmental and Climate Change Impacts, A Report Commissions by the Co-Operative and Undertaken by Researchers at the Tyndall Centre, University of Manchester, Manchester, UK, 2011.
  27. E. Barbot, N.S. Vidic, K.B. Gregory, R.D. Vidic, Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing, Environ. Sci. Technol., 47 (2013) 2562–2569.
  28. B.G. Rahm, J.T. Bates, L.R. Bertoia, A.E. Galford, D.A. Yoxtheimer, S.J. Riha, Wastewater management and Marcellus Shale gas development: trends, drivers, and planning implications, J. Environ. Manage., 120 (2013) 105–113.
  29. A. Vengosh, R.B. Jackson, N. Warner, T.H. Darrah, A. Kondash, A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States, Environ. Sci. Technol., 48 (2014) 8334–8348.
  30. T. Zhang, K. Gregory, R.W. Hammack, R.D. Vidic, Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction, Environ. Sci. Technol., 48 (2014) 4596–4603.
  31. O. Lokare, S. Tavakkoli, S. Wadekar, V. Khanna, R.D. Vidic, Fouling in direct contact membrane distillation of produced water from unconventional gas extraction, J. Membr. Sci., 524 (2017) 493–501.
  32. E.C. Chapman, R.C. Capo, B.W. Stewart, C.S. Kirby, R.W. Hammack, K.T. Schroeder, H.M. Edenborn, Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction, Environ. Sci. Technol., 46 (2012) 3545–3553.
  33. T.D. Hayes, B.F. Severin, Characterization of Flowback Waters from the Marcellus and Barnett Shale Regions, Barnett Appalach, Shale Water Management and Reuse Technologies RPSEA, Houston, TX, 2012.
  34. J.L. Luek, M. Gonsior, Organic compounds in hydraulic fracturing fluids and wastewaters: a review, Water Res., 123 (2017) 536–548.
  35. S.J. Maguire-boyle, A.R. Barron, Organic compounds in producced waters from shale gas wells, Environ. Sci. Processes Impacts, 16 (2014) 2237–2248.
  36. D.M. Akob, I.M. Cozzarelli, D.S. Dunlap, E.L. Rowan, M.M. Lorah, Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells, Appl. Geochem., 60 (2015) 116–125.
  37. E.G. Elliott, A.S. Ettinger, B.P. Leaderer, M.B. Bracken, N.C. Deziel, A systematic evaluation of chemicals in hydraulicfracturing fluids and wastewater for reproductive and developmental toxicity, J. Exposure Sci. Environ. Epidemiol., 27 (2017) 90–99.
  38. M.S. Gay, S. Oliver, S. Fletcher, N. Meyer, S. Gross, Water management in shale gas plays, IHS Walter White Pap., Indian Health Service, Rockville, MD, 2012.
  39. P. Boschee, Produced and flowback water recycling and reuse: economics, limitations, and technology, Oil Gas Facil., 3 (2014) 16–21.
  40. Q. Jiang, J. Rentschler, R. Perrone, K. Liu, Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production, J. Membr. Sci., 431 (2013) 55–61.
  41. B.A. Beckman, A. Ambulkar, A. Umble, D. Rosso, J. Husband, J. Cleary, J. Sandino, M. Goldblatt, R. Horres, R. Neufeld, R. Mau, S. Jeyanayagam, Considerations for Accepting Fracking Wastewater at Water Resource Recovery Facilities, Water Environment Federation, Alexandria, VA, 2014.
  42. C.E. Clark, J.A. Veil, Produced Water Volumes and Management Practices in the United States, Technical Report, US Department of Energy, Department of Scientific and Technical Information, Washington D.C., 2009.
  43. EPA, Underground Injection Control (UIC), US Environmental Protection Agency, 2019.
  44. Hydraulic Fracturing Study Technical Workshop #4 Water Resources Management, Environmental Protection Agency, Washington D.C., 2011.
  45. M. Schantz, Produced and Flowback Water Treatment from Fracking, Unconv. Oil Gas Symp., Oil & Gas Journal, Lexington, KY, 2014.
  46. S. Entrekin, M. Evans-White, B. Johnson, E. Hagenbuch, Rapid expansion of natural gas development poses a threat to surface waters, Front. Ecol. Environ., 9 (2011) 503–511.
  47. W.L. Ellsworth, Injection-induced earthquakes, Science, 341 (2013) 1–8.
  48. M. Weingarten, S. Ge, J.W. Godt, B.A. Bekins, J.L. Rubinstein, High-rate injection is associated with the increase in U.S. midcontinent seismicity, Science, 348 (2015) 1336–1340.
  49. M.C. Ryan, D. Alessi, A.B. Mahani, A. Cahill, J. Cherry, D. Eaton, R. Evans, N. Farah, A. Fernandes, O. Forde, P. Humez, S. Kletke, B. Ladd, J. Lemieux, B. Mayer, K.U. Mayer, J. Molson, L. Muehlenbachs, A. Nowamooz, B. Parker, Subsurface Impacts of Hydraulic Fracturing: Contamination, Seismic Sensitivity, and Groundwater Use and Demand Management, Canadian Water Network, Waterloo, ON, 2015.
  50. S. Horton, Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake, Seismol. Res. Lett., 83 (2012) 250–260.
  51. J.L. Rubinstein, A.B. Mahani, Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity, Seismol. Res. Lett., 86 (2015) 1060–1067.
  52. R.D. Vidic, S.L. Brantley, J.M. Vandenbossche, D. Yoxtheimer, J.D. Abad, Impact of shale gas development on regional water quality, Science, 340 (2013) 1235009, doi: 10.1126/science.1235009.
  53. K.J. Ferrar, D.R. Michanowicz, C.L. Christen, N. Mulcahy, S.L. Malone, R.K. Sharma, Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in pennsylvania, Environ. Sci. Technol., 47 (2013) 3472–3481.
  54. N. Warner, C. Christie, R.B. Jackson, A. Vengosh, Impacts of shale gas wastewater disposal on waster quality in Western Pennsylvania, Environ. Sci. Technol., 47 (2013) 11849–11857.
  55. N. Warner, Environmental and human health impacts of spreading oil and gas wastewater on roads, Environ. Sci. Technol., 52 (2018) 7081–7091.
  56. EPA, Guidelines for Water Reuse, Environmental Protection Agency, Washington D.C., 2012.
  57. S. Ahmadvand, B. Abbasi, B. Azarfar, M. Elhashimi, X. Zhang, B. Abbasi, Looking beyond energy efficiency: an applied review of water desalination technologies and an introduction to capillary-driven desalination, Water, 11 (2019) 696, https://doi. org/10.3390/w11040696.
  58. Y. Wang, H. Zhang, X. Yang, Y. Shen, Z. Chen, P. Cui, L. Wang, F. Meng, Y. Ma, J. Gao, Insight into separation of azeotrope in wastewater to achieve cleaner production by extractive distillation and pressure-swing distillation based on phase equilibrium, J. Cleaner Prod., 276 (2020) 124213, https://doi. org/10.1016/j.jclepro.2020.124213.
  59. Y. Cui, X. Shi, C. Guang, Z. Zhang, C. Wang, C. Wang, Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater, Process Saf. Environ. Prot., 122 (2019) 1–12.
  60. A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination, 239 (2009) 10–21.
  61. R. Holloway, A.E. Childress, K. Dennett, T.Y. Cath, Forward osmosis for concentration of anaerobic digester centrate, Water Res., 41 (2007) 4005–4014.
  62. A. Sagiv, N. Avraham, C. Dosoretz, R. Semiat, Osmotic backwash mechanism of reverse osmosis membranes, J. Membr. Sci., 322 (2008) 225–233.
  63. A. Sagiv, R. Semiat, Parameters affecting backwash variables of RO membranes, Desalination, 261 (2010) 347–353.
  64. H. Chang, T. Li, B. Liu, C. Chen, Q. He, J.C. Crittenden, Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: the effects of backwash water, Environ. Int., 130 (2019) 104869, https://doi. org/10.1016/j.envint.2019.05.063.
  65. H. Chang, T. Li, B. Liu, R.D. Vidic, M. Elimelech, J.C. Crittenden, Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: a review, Desalination, 455 (2019) 34–57.
  66. K.L. Hickenbottom, N.T. Hancock, N.R. Hutchings, E.W. Appleton, E.G. Beaudry, P. Xu, T.Y. Cath, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination, 312 (2013) 60–66.
  67. C.S. Ong, B. Al-anzi, W.J. Lau, P.S. Goh, G.S. Lai, Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment, Sci. Rep., 7 (2017) 1–11.
  68. S.J. Maguire-boyle, E.H. Joseph, T.J. Ainscough, D.L. Oatley, A.A. Alabdulkarem, S.F. Al-mojil, A.R. Barron, Superhydrophilic functionalization of microfiltration ceramic membranes enables separation of hydrocarbons from frac and produced water, Sci. Rep., 7 (2017) 12267, https://doi.org/10.1038/s41598-017-12499-w.
  69. H.R. Acharya, C. Henderson, H. Wang, Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use, U.S. Department of Energy, Washington, D.C., 2011.
  70. R. Bouchrit, A. Boubakri, A. Hafiane, S.A.-T. Bouguecha, Direct contact membrane distillation; capability to treat hyper-saline solution, Desalination, 376 (2015) 117–129.
  71. A. Efraty, R.N. Barak, Z. Gal, Closed circuit desalination – a new low energy high recovery technology without energy recovery, Desal. Water Treat., 31 (2011) 95–101.
  72. S.M. Riley, D.C. Ahoor, K. Oetjen, T.Y. Cath, Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity, Desalination, 442 (2018) 51–61.
  73. T.V. Bartholomew, L. Mey, J.T. Arena, N.S. Siefert, M.S. Mauter, Osmostically assisted reverse osmosis for high salinity bring treatment, Desalination, 421 (2017) 3–11.
  74. B.D. Coday, P. Xu, E.G. Beaudry, J. Herron, K. Lampi, N.T. Hancock, T.Y. Cath, The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams, Desalination, 333 (2014) 23–35.
  75. L. Chekli, S. Phuntsho, J. Eun, J. Kim, J. Young, J. Choi, S. Kim, J. Ha, S. Hong, J. Sohn, H.K. Shon, A comprehensive review of hybrid forward osmosis systems: performance, applications and future prospects, J. Membr. Sci., 497 (2016) 430–449.
  76. R.L. Mcginnis, N.T. Hancock, M.S. Nowosielski-Slepowron, Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines, Desalination, 312 (2013) 67–74.
  77. X. Li, B. Zhao, Z. Wang, M. Xie, J. Song, L. Nghiem, T. He, C. Yang, C. Li, G. Chen, Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system, Water Sci. Technol., 69 (2014) 1036–1044.
  78. T.Y. Cath, N.T. Hancock, C.D. Lundin, C. Hoppe-Jones, J.E. Drewes, A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water, J. Membr. Sci., 362 (2010) 417–426.
  79. N.T. Hancock, N.D. Black, T.Y. Cath, A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes, Water Res., 46 (2011) 1145–1154.
  80. HTI, Oil Wastewater Treatment & Gas Wastewater Treatment: Lead Story, Hydration Technology Innovations, Albany, OR, 2011.
  81. K. Lawson, D. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  82. L.D. Tijing, Y. Chul, J. Choi, S. Lee, S. Kim, H. Kyong, Fouling and its control in membrane distillation — a review, J. Membr. Sci., 475 (2015) 215–244.
  83. V. Calabro, E. Drioli, F. Matera, Membrane distillation in the textile wastewater treatment, Desalination, 83 (1991) 209–224.
  84. Y. Wu, Y. Kong, J. Liu, J. Zhang, J. Xu, An experimental study on membrane distillation: crystallization for treating waste water in taurine production, Desalination, 80 (1991) 235–224.
  85. P.P. Zolotarev, V.V. Ugrozov, I. Volkina, V. Nikulin, Treatment of waste water for removing heavy metals by membrane distillation, J. Hazard. Mater., 78 (1994) 77–82.
  86. M. Tomaszewska, Concentration of the extraction fluid from sulfuric acid treatment of phosphogypsum by membrane distillation, J. Membr. Sci., 78 (1993) 277–282.
  87. E. Jang, S. Jeong, E. Chung, Application of three different water treatment technologies to shale gas produced water, Geosyst. Eng., 20 (2017) 104–110.
  88. Z. Zhang, X. Du, K. Carlson, C. Robbins, T. Tong, Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration, Desalination, 454 (2019) 82–90.
  89. M. Mulder, Basic Principles of Membrane Technologies, Kluwer Academic Publishers, New York, NY, 1996.
  90. F.-X. Kong, Z.-P. Wang, Z. Ji, J.-F. Chen, C.-M. Guo, G.-D. Sun, Y.F. Xie, Organic fouling of membrane distillation for shale gas fracturing flowback water desalination: a special interest in the feed properties by pretreatment, Environ. Sci. Water Res. Technol., 5 (2019) 1339–1348.
  91. A. Carrero-Parreño, V.C. Onishi, R. Salcedo-Díaz, E.S. Fraga, J.A. Caballero, J.A. Reyes-Labarta, Optimal pretreatment system of flowback water from shale gas production, Ind. Eng. Chem. Res., 56 (2017) 4386–4398.
  92. P. Tang, B. Liu, Y. Zhang, H. Chang, P. Zhou, M. Feng, Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis, Chem. Eng. J., 392 (2020) 123743, https://doi.org/10.1016/j.cej.2019.123743.
  93. T. Sirivedhin, J. McCue, L. Dallbauman, Reclaiming produced water for benficial use: salt removal by electrodialysis, J. Membr. Sci., 243 (2004) 335–343.
  94. M.E. Blauch, R.R. Myers, T. Moore, B.A. Lipinski, N.A. Houston, Marcellus Shale Post-Frac Flowback Waters - Where is All the Salt Coming From and What are the Implications?, SPE Eastern Regional Meeting, 2009.
  95. Y.R. Glazer, J.B. Kjellsson, K.T. Sanders, M.E. Webber, Potential for using energy from flared gas for on-site hydraulic fracturing wastewater treatment in Texas, Environ. Sci. Technol. Lett., 1 (2014) 300–304.
  96. R. Bahar, M.N.A. Hawlader, L.S. Woei, Performance evaluation of a mechanical vapor compression desalination system, Desalination, 166 (2004) 123–127.
  97. H. Aybar, Analysis of a mechanical vapor compression desalination system, Desalination, 142 (2002) 181–186.
  98. M. Al-Shammiri, M. Safar, Multi-effect distillation plants: state of the art, Desalination, 126 (1999) 45–59.
  99. G. Raluy, L. Serra, J. Uche, Life cycle assessment of MSF, MED and RO desalination technologies, Energy, 31 (2006) 2361–2372.
  100. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  101. D. Zhao, J. Xue, S. Li, H. Sun, Q. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high salinity wastewater, Desalination, 273 (2011) 292–298.
  102. W.L. Luyben, Pressure-swing distillation for minimum- and maximum-boiling homogeneous azeotropes, Ind. Eng. Chem. Res., 51 (2012) 1–6.
  103. J. Pla-Franco, E. Lladosa, S. Loras, J.B. Montón, Azeotropic distillation for 1-propanol dehydration with diisopropyl ether as entrainer: equilibrium data and process simulation, Sep. Purif. Technol., 212 (2019) 692–698.
  104. I.L. Chien, B.Y. Yu, Z.J. Ai, R. Elyas, C.L. Chen, Design of Azeotropic Distillation Systems, in: Chemical Engineering Process Simulation, Elsevier, Amsterdam, NL, 2017, pp. 355–385.
  105. A.A. Kiss, Distillation | Extractive Distillation, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, NL, 2013, pp. 0–24.
  106. A. Selvi, L. Schoon, P. Jansens, A. Bardow, Purity versus recovery in FricDiff separations for feed-side and sweep-side products, Sep. Purif. Technol., 76 (2010) 95–103.
  107. V. Gomis, R. Pedraza, M.D. Saquete, A. Font, J. García-cano, Ethanol dehydration via azeotropic distillation with gasoline fraction mixtures as entrainers: a pilot-scale study with industrially produced bioethanol and naphta, Fuel Process. Technol., 140 (2015) 198–204.
  108. P. Shi, Y. Gao, J. Wu, D. Xu, J. Gao, X. Ma, Y. Wang, Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): isobaric vapour-liquid phase equilibrium measurements and azeotropic distillation, J. Chem. Thermodyn., 115 (2017) 19–26.
  109. J. Li, Z. Lei, Z. Ding, C. Li, B. Chen, Azeotropic distillation: a review of mathematical models, Sep. Purif. Rev., 34 (2005) 87–129.
  110. Y. Ma, P. Cui, Y. Wang, Z. Zhu, Y. Wang, J. Gao, A review of extractive distillation from an azeotropic phenomenon for dynamic control, Chin. J. Chem. Eng., 27 (2019) 1510–1522.
  111. Z. Lei, C. Li, B. Chen, Extractive distillation: a review, Sep. Purif. Rev., 32 (2003) 121–213.
  112. Y. Peng, X. Lu, B. Liu, J. Zhu, Separation of azeotropic mixtures (ethanol and water) enhanced by deep eutectic solvents, Fluid Phase Equilib., 448 (2017) 128–134.
  113. Y.H. Wang, I.L. Chien, Unique design considerations for maximum-boiling azeotropic systems via extractive distillation: acetone/chloroform separation, Ind. Eng. Chem. Res., 57 (2018) 12884–12894.
  114. W.L. Luyben, I.L. Chien, Design and Control of Distillation Systems for Separating Azeotropes, John Wiley & Sons, Hoboken, NJ, 2011.
  115. M. Skiborowski, A. Harwardt, W. Marquart, Conceptual Design of Azeotropic Distillation Processes, in: Distillation, Academic Press, Cambridge, MA, 2014, pp. 305–355.
  116. W.L. Luyben, Methanol/trimethoxysilane azeotrope separation using pressure-swing distillation, Ind. Eng. Chem. Res., 53 (2014) 5590–5597.
  117. S. Liang, Y. Cao, X. Liu, X. Li, Y. Zhao, Y. Wang, Y. Wang, Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control, Chem. Eng. Res. Des., 117 (2016) 318–335.
  118. Z. Lei, B. Chen, Z. Ding, Adsorption Distillation, in: Special Distillation Processes, Elsevier, Amsterdam, NL, 2005.
  119. S. Kalla, S. Upadhyaya, K. Singh, R. Baghel, Development of heat and mass transfer correlations and recovery calculation for HCl–water azeotropic separation using air gap membrane distillation, Chem. Pap., 73 (2019) 2449–2460.
  120. H. Li, C. Guo, H. Guo, C. Yu, X. Li, X. Gao, Methodology for design of vapor permeation membrane-assisted distillation processes for aqueous azeotrope dehydration, J. Membr. Sci., 579 (2019) 318–328.
  121. Z. Lei, B. Chen, Z. Ding, Membrane Distillation, in: Special Distillation Processes, Elsevier, Amsterdam, NL, 2005.
  122. N.G. Kanse, S.D. Dawande, B.D. Prashant, Effect of feed temperature and solution concentration on pervaporation for separation of azeotrpoic mixtures, Mater. Today:. Proc., 5 (2018) 3541–3550.
  123. J.P.G. Villaluenga, A review on the separation of benzene/ cyclohexane mixtures by pervaporation processes, J. Membr. Sci., 169 (2000) 159–174.
  124. Y.K. Ong, G. Min, N. Lieu, Y. Pan, J. Zuo, S.P. Nunes, T. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci., 57 (2016) 1–31.
  125. W. Kujawski, Application of pervaporation and vapor permeation in environmental protection, Polish J. Environ. Stud., 9 (2000) 13–26.
  126. B. Breure, E.A.J.F. Peters, P.J.A.M. Kerkhof, Separation of azeotropic mixtures of alcohols and water with FricDiff, Sep. Purif. Technol., 62 (2008) 349–362.
  127. P. Číhal, O. Vopička, T. Durďáková, P.M. Budd, W. Harrison, K. Friess, Pervaporation and vapour permeation of methanol – dimethyl carbonate mixtures through PIM-1 membranes, Sep. Purif. Technol., 217 (2019) 206–214.
  128. M. Geboers, P. Kerkhof, P. Lipman, F. Peters, FricDiff: a novel separation concept, Sep. Purif. Technol., 56 (2007) 47–52.
  129. W. Arlt, Azeotropic Distillation, in: Distillation, Academic Press, Cambridger, MA, 2014, pp. 247–259.
  130. H.R. Mortaheb, H. Kosuge, Simulation and optimization of heterogeneous azeotropic distillation process with a ratebased model, Chem. Eng. Process. Process Intensif., 43 (2004) 317–326.
  131. Y.C. Wu, H.Y. Lee, H.P. Huang, I.L. Chien, Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems, Ind. Eng. Chem. Res., 53 (2014) 1537–1552.
  132. M. Aurangzeb, A.K. Jana, Double-partitioned dividing wall column for a multicomponent azeotropic system, Sep. Purif. Technol., 219 (2019) 33–46.
  133. M. Seiler, D. Kohler, W. Arlt, Hyperbranched polymers: new selective solvents for extractive distillation and solvent extraction, Sep. Purif. Technol., 29 (2002) 245–263.
  134. B. Chen, Z. Lei, Q. Li, C. Li, Application of CAMD in separating hydrocarbons by extractive distillation, AIChE J., 51 (2005) 3114–3121.
  135. K.G. Joback, Computer Aided Molecular Design (CAMD): Designing Better Chemical Products, Molecular Knowledge Systems, Inc., Bedford, NH.
  136. V. Gerbaud, I. Rodriguez-Donis, L. Hegely, P. Lang, F. Denes, X. You, Review of extractive distillation. Process design, operation, optimization and control, Chem. Eng. Res. Des., 141 (2018) 229–271.
  137. S. Sun, L. Lü, A. Yang, S. Wei, W. Shen, Extractive distillation: advances in conceptual design, solvent selection, and separation strategies, Chin. J. Chem. Eng., 27 (2019) 1247–1256.
  138. Q. Zhang, M. Liu, W. Li, C. Li, A. Zeng, Heat-integrated triple-column pressure-swing distillation process with multirecycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene, Sep. Purif. Technol., 211 (2019) 40–53.
  139. J.P. Knapp, M.F. Doherty, A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures, Ind. Eng. Chem. Res., 31 (1992) 346–357.
  140. J. Bonet, M. Galan, J. Costa, R. Thery, X. Meyer, M. Meyer, J. Reneaume, Pressure Optimisation of an Original System of Pressure Swing with a Reactive Column. Institution of Chemical Engineers Symposium Series 152, Rugby, Warwickshire, 2006, pp. 344–352.
  141. M. Skiborowski, A. Harwardt, W. Marquardt, Chapter 8 – Conceptual Design of Azeotropic Distillation Processes, Elsevier Inc., Amsterdam, NL, 2014.
  142. Y.T. Ong, K.F. Yee, Y.K. Cheng, S.H. Tan, A review on the use and stability of supported liquid membranes in the pervaporation process, Sep. Purif. Rev., 43 (2014) 62–88.
  143. E. Drioli, A. Ali, F. Macedonio, Membrane distillation: recent developments and perspectives, Desalination, 356 (2015) 56–84.
  144. A. Karimi, M.A. Abdi, Selective dehydration of highpressure natural gas using supersonic nozzles, Chem. Eng. Process. Process Intensif., 48 (2009) 560–568.
  145. W. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 2015.
  146. J. Speight, Lange’s Handbook of Chemistry, McGraw-Hill, New York, NY, 2005.