References
- J. Alchouron, C. Navarathna, P.M. Rodrigo, A. Snyder,
H.D. Chludil, A.S. Vega, G. Bosi, F. Perez, D. Mohan,
C.U. Pittman Jr., T.E. Mlsna, Household arsenic contaminated
water treatment employing iron oxide/bamboo biochar
composite: an approach to technology transfer, J. Colloid
Interface Sci., 587 (2021) 767–779.
- R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic
contamination, consequences and remediation techniques:
a review, Ecotoxicol. Environ. Saf., 112 (2015) 247–270.
- P. Chutia, S. Kato, T. Kojima, S. Satokawa, Arsenic adsorption
from aqueous solution on synthetic zeolites, J. Hazard. Mater.,
162 (2009) 440–447.
- F.W. Pontius, K.G. Brown, C.J. Chen, Health implications of
arsenic in drinking water, J. Am. Water Works Assn., 86 (1994)
52–63.
- A.A. Meharg, J. Hartley‐Whitaker, Arsenic uptake and
metabolism in arsenic resistant and nonresistant plant
species, New Phytol., 154 (2002) 29–43.
- D. Vromman, J.-P. Martínez, M. Kumar, Z. Šlejkovec, S. Lutts,
Comparative effects of arsenite (As(III)) and arsenate (As(V))
on whole plants and cell lines of the arsenic-resistant halophyte
plant species Atriplex atacamensis, Environ. Sci. Pollut.
Res., 25 (2018) 34473–34486.
- C.M. George, L. Sima, M.H.J. Arias, J. Mihalic, L.Z. Cabrera,
D. Danz, W. Checkley, R.H. Gilman, Arsenic exposure in
drinking water: an unrecognized health threat in Peru, Bull.
World Health Organ., 92 (2014) 565–572.
- C.-C. Chen, Y.-C. Chung, Arsenic removal using a biopolymer
chitosan sorbent, J. Environ. Sci. Health. Part A Toxic/Hazard.
Subst. Environ. Eng., 41 (2006) 645–658.
- J. Alchouron, C. Navarathna, H.D. Chludil, N.B. Dewage,
F. Perez, E.B. Hassan, C.U. Pittman Jr., A.S. Vega, T.E. Mlsna,
Assessing South American Guadua chacoensis bamboo biochar
and Fe3O4 nanoparticle dispersed analogues for aqueous
arsenic(V) remediation, Sci. Total Environ., 706 (2020) 135943,
https://doi.org/10.1016/j.scitotenv.2019.135943.
- H. Rasheed, P. Kay, R. Slack, Y.Y. Gong, A. Carter, Human
exposure assessment of different arsenic species in household
water sources in a high risk arsenic area, Sci. Total Environ.,
584–585 (2017) 631–641.
- L. Singh, P. Semil, Removal of arsenic in aqueous solution
by low cost adsorbent: a short review, Int. J. ChemTech Res.,
5 (2013) 1299–1308.
- N.V. Vinh, M. Zafar, S.K. Behera, H.-S. Park, Arsenic(III)
removal from aqueous solution by raw and zinc-loaded pine
cone biochar: equilibrium, kinetics, and thermodynamics
studies, Int. J. Environ. Sci. Technol., 12 (2014) 1283–1294.
- D. Mohan, C.U. Pittman Jr., Arsenic removal from water/
wastewater using adsorbents—a critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- R. Kumar, M. Patel, P. Singh, J. Bundschuh, C.U. Pittman
Jr., L. Trakal, D. Mohan, Emerging technologies for arsenic
removal from drinking water in rural and peri-urban areas:
methods, experience from, and options for Latin America, Sci.
Total Environ., 694 (2019) 133427, https://doi.org/10.1016/j.
scitotenv.2019.07.233.
- C.M. Navarathna, N.B. Dewage, C. Keeton, J. Pennisson,
R. Henderson, B. Lashley, X.F. Zhang, E.B. Hassan, F. Perez,
D. Mohan, C.U. Pittman Jr., T. Mlsna, Biochar adsorbents with
enhanced hydrophobicity for oil spill removal, ACS Appl.
Mater. Interfaces, 12 (2020) 9248–9260.
- X.-f. Tan, Y.-g. Liu, Y.-l. Gu, Y. Xu, G.-m. Zeng, X.-j. Hu, S.-b. Liu,
X. Wang, S.-m. Liu, J. Li, Biochar-based nano-composites for the
decontamination of wastewater: a review, Bioresour. Technol.,
212 (2016) 318–333.
- D. Borah, S. Satokawa, S. Kato, T. Kojima, Surface-modified
carbon black for As(V) removal, J. Colloid Interface Sci.,
319 (2008) 53–62.
- J.W. Kim, J.Y. Song, S.-M. Lee, J.H. Jung, Application of ironmodified
biochar for arsenite removal and toxicity reduction,
J. Ind. Eng. Chem., 80 (2019) 17–22.
- K.Z. Benis, A.M. Damuchali, J. Soltan, K.N. McPhedran,
Treatment of aqueous arsenic – a review of biochar modification
methods, Sci. Total Environ., 739 (2020) 139750, https://doi.
org/10.1016/j.scitotenv.2020.139750.
- C.M. Navarathna, A.G. Karunanayake, S.R. Gunatilake,
C.U. Pittman Jr., F. Perez, D. Mohan, T. Mlsna, Removal of
Arsenic(III) from water using magnetite precipitated onto
Douglas fir biochar, J. Environ. Manage., 250 (2019) 109429,
https://doi.org/10.1016/j.jenvman.2019.109429.
- A. El Hanandeh, R.A. Abu-Zurayk, I. Hamadneh,
A.H. Al-Dujaili, Characterization of biochar prepared from
slow pyrolysis of Jordanian olive oil processing solid waste
and adsorption efficiency of Hg2+ ions in aqueous solutions,
Water Sci. Technol., 74 (2016) 1899–1910.
- J.-Q. Jiang, S.M. Ashekuzzaman, J.S.J. Hargreaves,
A.R. McFarlane, A.B.M. Badruzzaman, M.H. Tarek, Removal
of arsenic(III) from groundwater applying a reusable Mg-Fe-Cl
layered double hydroxide, J. Chem. Technol. Biotechnol.,
90 (2015) 1160–1166.
- C.H. Chia, B. Gong, S.D. Joseph, C.E. Marjo, P. Munroe,
A.M. Rich, Imaging of mineral-enriched biochar by FTIR,
Raman and SEM–EDX, Vib. Spectrosc., 62 (2012) 248–257.
- P.C. Nagajyothi, P. Muthuraman, T.V.M. Sreekanth, D.H. Kim,
J. Shim, Green synthesis: in-vitro anticancer activity of copper
oxide nanoparticles against human cervical carcinoma cells,
Arabian J. Chem., 10 (2017) 215–225.
- H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C. Zheng, Characteristics
of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007)
1781–1788.
- S.X. Tan, W.J. Zou, F.P. Jiang, S.Z. Tan, Y.L. Liu, D.S. Yuan, Facile
fabrication of copper-supported ordered mesoporous carbon
for antibacterial behavior, Mater. Lett., 64 (2010) 2163–2166.
- A.D. Igalavithana, Y.S. Ok, N.K. Niazi, M. Rizwan,
M.I. Al-Wabel, A.R.A. Usman, D.H. Moon, S.S. Lee, Effect
of corn residue biochar on the hydraulic properties of sandy
loam soil, Sustainability, 9 (2017) 266, https://doi.org/10.3390/
su9020266.
- M. Nasrollahzadeh, M. Maham, S. Mohammad Sajadi, Green
synthesis of CuO nanoparticles by aqueous extract of Gundelia
tournefortii and evaluation of their catalytic activity for the
synthesis of N-monosubstituted ureas and reduction of
4-nitrophenol, J. Colloid Interface Sci., 455 (2015) 245–253.
- S.N. do Carmo Ramos, A.L.P. Xavier, F.S. Teodoro, L.F. Gil,
L.V.A. Gurgel, Removal of cobalt(II), copper(II), and nickel(II)
ions from aqueous solutions using phthalate-functionalized
sugarcane bagasse: mono- and multicomponent adsorption
in batch mode, Ind. Crops Prod., 79 (2016) 116–130.
- M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, M.F. Chen,
Progress in the preparation and application of modified
biochar for improved contaminant removal from water and
wastewater, Bioresour. Technol., 214 (2016) 836–851.
- B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman,
B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizão, J. Petersen,
E.G. Neves, Black carbon increases cation exchange capacity
in soils, Soil Sci. Soc. Am. J., 70 (2006) 1719–1730.
- M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, A. Amir,
Adsorptive desulfurization of model oil using untreated, acid
activated and magnetite nanoparticle loaded bentonite as
adsorbent, J. Saudi Chem. Soc., 21 (2017) 143–151.
- S. Lagergren, About the theory of so-called adsorption of
soluble substances, Kungliga Svenska Vetenskapsakademiens
Handlingar, 24 (1898) 1–39.
- Y.-S. Ho, Review of second-order models for adsorption
systems, J. Hazard. Mater., 36 (2006) 681–689.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- N.A.S. Mohammed, R.A. Abu-Zurayk, I. Hamadneh,
A.H. Al-Dujaili, Phenol adsorption on biochar prepared from
the pine fruit shells: equilibrium, kinetic and thermodynamics
studies, J. Environ. Manage., 226 (2018) 377–385.
- G. Yang, H.L. Chen, H.D. Qin, Y.J. Feng, Amination of activated
carbon for enhancing phenol adsorption: effect of nitrogencontaining
functional groups, Appl. Surf. Sci., 293 (2014)
299–305.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, About the adsorption, Zeitschrift
für Physikalische Chemie, 57 (1906) 385–470.
- M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption
and structure of active carbon I. Adsorption of organic vapors,
J. Phys. Chem. A, 21 (1947) 1351–1362.
- D. Hsu, C.Y. Lu, T.R. Pang, Y.P. Wang, G.H. Wang, Adsorption
of ammonium nitrogen from aqueous solution on chemically
activated biochar prepared from sorghum distillers grain,
Appl. Sci. (Switzerland), 9 (2019) 5249, https://doi.org/10.3390/
app9235249.
- H. Chen, J. Zhao, G.L. Dai, J.Y. Wu, H. Yan, Adsorption
characteristics of Pb(II) from aqueous solution onto a natural
biosorbent, fallen Cinnamomum camphora leaves, Desalination,
262 (2010) 174–182.
- Z.H. Yu, L. Zhou, Y.F. Huang, Z.G. Song, W.W. Qiu, Effects of
a manganese oxide-modified biochar composite on adsorption
of arsenic in red soil, J. Environ. Manage., 163 (2015) 155–162.
- H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao,
Mistakes and inconsistencies regarding adsorption of
contaminants from aqueous solutions: a critical review, Water
Res., 120 (2017) 88–116.